Advertisement

Sex Steroids and Prostaglandins in Bone Metabolism

  • Webster S. S. Jee
  • Yanfei F. Ma
  • Mei Li
  • Xiaoquang G. Liang
  • Baiyun Y. Lin
  • Xiaojian J. Li
  • Hua Z. Ke
  • Satoshi Mori
  • Rebecca B. Setterberg
  • Donald B. Kimmel
Part of the Ernst Schering Research Foundation Workshop book series (SCHERING FOUND, volume 9)

Abstract

Sex steroids play an important role in skeletal growth and maintenance of bone mass in adults (Johnston 1985). Estrogen deficiency is important in the development of osteoporosis in women. Androgen deficiency may be as important in osteoporotic men (Foresta et al. 1985). The main effects of estrogen and androgen withdrawal are an increase in bone resorption with a smaller increase in bone formation and a consequent decrease in bone mass (osteopenia or osteoporosis; Jackson et al. 1987).

Keywords

Cortical Bone Cancellous Bone Tibial Shaft Longitudinal Bone Growth Cortical Bone Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akamine T, Jee WSS, Ke HZ, Li XJ, Lin BY (1992) PGE2 prevents disuse-induced cancellous bone loss and adds extra bone to immobilized bones. Bone 13: 11–12PubMedCrossRefGoogle Scholar
  2. Burr DB, Martin RB (1983) The effects of composition, structure and age on the torsional properties of the human radius. J Biomechanics 16: 603–608CrossRefGoogle Scholar
  3. Compston JE, Mellish RWE, Garrahan NJ (1987) Age-related changes in iliac crest trabecular microanatomic bone structure in man. Bone 8: 289–292PubMedCrossRefGoogle Scholar
  4. Dahinten SL, Pucciarelli HM (1986) Variations in sexual dimorphism in the skulls of rats subjected to malnutrition, castration and treatment with gonadal hormones. Am J Physical Anthropol 71: 63–67CrossRefGoogle Scholar
  5. Dawson AB (1925) The age order of epiphyseal union in long bones of albino rats. Anat Rec 31: 1–17CrossRefGoogle Scholar
  6. deWinter FR, Steendijk R (1975) The effect of a low-calcium diet in lactating rats; observations on the rapid development and repair of osteoporosis. Calcif Tissue Res 17: 303–316CrossRefGoogle Scholar
  7. Fogelman I, Bessent RG, Turner JG (1978) The use of whole body retention of Tc-99m diphosphonate in the diagnosis of metabolic bone disease. J Nucl Med 19: 270–274PubMedGoogle Scholar
  8. Foresta C, Zannatta GP, Busnardo B, Scanelli G, Scandellari C (1985) Testosterone and calcitonin plasma levels in hypogonadal osteoporotic young men. J Endocrinol Invest 8: 377–379PubMedGoogle Scholar
  9. Frost HM (1964) The laws of bone structure. Thomas, SpringfieldGoogle Scholar
  10. Frost HM (1977) A method of analysis of trabecular bone dynamics. In: Meunier PJ (ed) Bone histomorphometry. Armour-Montagu, Paris, pp 445–476Google Scholar
  11. Frost HM (1983) The minimum effective strain: a determinant of bone architecture. Clin Orthop 175: 286–292PubMedGoogle Scholar
  12. Frost HM (1986) Intermediary organization of the skeleton, vols I and I I. CRC, Boca RatonGoogle Scholar
  13. Frost HM (1987) The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2: 73–85PubMedGoogle Scholar
  14. Frost HM (1990) Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. 2. The remodeling problem. Anat Rec 226: 403–422PubMedCrossRefGoogle Scholar
  15. Frost HM, Jee WSS (1992) On the rat model of human osteopenias and osteoporoses. Bone Miner 18: 227–236PubMedCrossRefGoogle Scholar
  16. Ito H, Ke HZ, Jee WSS, Sakou T (1993) Anabolic responses of an adult can- cellous bone site to prostaglandin E2 in the rat. Bone Miner 21: 219–236PubMedCrossRefGoogle Scholar
  17. Jackson JA, Kleerekoper M, Parfitt AM, Rao DS, Villanueva AR, Frame B. (1987) Bone histomorphometry in hypogonadal and eugonadal men with spinal osteoporosis. 65: 53–58Google Scholar
  18. Jee WSS (1991) The aged rat model for bone biology studies. Cells Materials [Suppl l]: 1–192Google Scholar
  19. Jee WSS, Inoue J, Jee KW, Haba T (1983) Histomorphometric assay of the growing long bone. In: Takahashi H (ed) Handbook of bone morphology. Nishimura, Niigata City, Japan, pp 101–122Google Scholar
  20. Jee WSS, Ueno K, Deng YP, Woodbury DM (1985) The effects of PGE2 in growing rats: increased metaphyseal hard tissue and cortico-endosteal bone formation. Calcif Tissue Int 37: 148–157PubMedCrossRefGoogle Scholar
  21. Jee WSS, Ueno K, Kimmel DB, Woodbury DM, Price P, Woodbury LA (1987) The role of bone cells in increasing metaphyseal hard tissue in rapidly growing rats treated with PGE2. Bone 8: 171–178PubMedCrossRefGoogle Scholar
  22. Jee WSS, Mori S, Li XJ, Chan S (1990) PGE2 enhances cortical bone mass and activates intracortical bone remodeling in intact and ovariectomized female rats. Bone 11: 253–266PubMedCrossRefGoogle Scholar
  23. Jee WSS, Ke HZ, Li XJ (199la) Long term anabolic effects of PGE2 on tibial diaphyseal bone in male rats. Bone Miner 15: 33–55Google Scholar
  24. Jee WSS, Li XJ, Ke HZ (1991b) The skeletal adaptation to mechanical usage in the rat. Cells Materials [Suppl 1]: 131–142Google Scholar
  25. Jee WSS, Ke HZ, Li XJ (1992a) Loss of PGE2-induced cortical bone after its withdrawal in rats. Bone Miner 17: 31–47PubMedCrossRefGoogle Scholar
  26. Jee WSS, Akamine T, Ke HZ, Li XJ, Tang LY, Qeng QQ (1992b) PGE2 prevents disuse-induced cortical bone loss. Bone 13: 153–159PubMedCrossRefGoogle Scholar
  27. Jee WSS, Tang L, Ke HZ, Setterberg RB, Kimmel DB (1993) Maintaining restored bone with bisphosphonate in the ovariectomized rat skeleton: dynamic histomorphometry of changes in bone mass. Bone 14: 481–485PubMedCrossRefGoogle Scholar
  28. Johnston CC (1985) Studies on prevention of age-related bone loss. In: Peck WA (ed) Bone and mineral research/3. Elsevier, Amsterdam, pp 233–257Google Scholar
  29. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15: 175–192PubMedCrossRefGoogle Scholar
  30. Ke HZ, Jee WSS (1992) Effects of daily administration of PGE2 and its withdrawal on the lumbar vertebral bodies in male rats. Anat Rec 234: 172–182PubMedCrossRefGoogle Scholar
  31. Ke HZ, Jee WSS, Li XJ (1991) Partial loss of anabolic effect of prostaglandin E2 on bone after its withdrawal in rats. Bone 12: 173–183PubMedCrossRefGoogle Scholar
  32. Ke HZ, Jee WSS, Mori S, Li XJ, Kimmel DB (1992a) Effects of long-term daily administration of prostaglandin E2 on maintaining elevated proximal tibial metaphyseal cancellous bone mass in male rats. Calcif Tissue Int 50: 245–252PubMedCrossRefGoogle Scholar
  33. Ke HZ, Li M, Jee WSS (1992b) Prostaglandin2 prevents ovariectomy-induced cancellous bone loss in rat. Bone Miner 9: 45–62CrossRefGoogle Scholar
  34. Kimmel DB (1991) The oophorectomized beagle as an experimental model for estrogen-depletion bone loss in adult human. Cells Materials [Suppl 11: 75–84Google Scholar
  35. Li XJ, Jee WSS, Chow SY, Woodbury DM (1990a) Adaptation of cancellous bone to aging and immobilization in the rat. Anat Rec 227: 12–24PubMedCrossRefGoogle Scholar
  36. Li XJ, Jee WSS, Li YL, Patterson-Buckendahl P (1990b) Transient effects of subcutaneously administered PGE2 on cancellous and cortical bone in young adult dogs. Bone 11: 353–364PubMedCrossRefGoogle Scholar
  37. Li Xi, Jee WSS, Ke HZ, Mori S, Akamine T (1991) Age related changes of cancellous and cortical bone histomorphometry in female Sprague-Dawley rats. Cells Materials [Suppl 1]: 25–35Google Scholar
  38. Li M, Jee WSS, Ke HZ, Liang XG, Lin BY, Ma YF, Setterberg RB (1993) Prostaglandin E2 restores cancellous bone to immobilized limb and adds bone to overloaded limb in right hindlimb immobilization rats. Bone 14: 283–288PubMedCrossRefGoogle Scholar
  39. Lindgren JU (1976) The effect of thyroparathyroidectomy on development of disuse osteoporosis in adult rats. Clin Orthop 118: 251–255PubMedGoogle Scholar
  40. Lund JE, Brown WP, Tregerman L (1982) The toxicology of PGE2. In: Wu KK, Rossi EC (eds) Prostaglandin in clinical medicine: cardiovascular and thrombotic disorders. Yearbook Medical, New York, pp 93–109Google Scholar
  41. Martin RB, Burr DB (1989) Structure, function and adaptation of compact bone. Raven, New York, pp 230–233Google Scholar
  42. Mazess RB (1990) Fracture risk: a role for compact bone. Calcif Tissue Int 47: 191–193PubMedCrossRefGoogle Scholar
  43. Mori S, Jee WSS, Li XJ, Chan S, Kimmel DB (1990) Effects of PGE2 on production of new cancellous bone in the axial skeleton of ovariectomized rats. Bone 11: 103–113PubMedCrossRefGoogle Scholar
  44. Mori, S, Jee WSS, Li XJ (1992) Production of new trabecular bone in osteopenic ovariectomized rats. Calcif Tissue Int 50: 80–87PubMedCrossRefGoogle Scholar
  45. Norrdin RW, Jee WSS, High WB (1990) The role of prostaglandins in bone in vivo. Prostaglandins Leukot Essent Fatty Acids 41: 139–149PubMedCrossRefGoogle Scholar
  46. Owen M (1980) The origin of bone cells in the postnatal organism. Arthritis Rheum 23: 1073–1079PubMedCrossRefGoogle Scholar
  47. Parfitt AM (1990) Bone-forming cells in clinical condition. In: Hall BK (ed) The osteoblast and osteocyte. Telford, Caldwell, NJ, pp 351–429Google Scholar
  48. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols and units. J Bone Miner Res 2: 595–610PubMedCrossRefGoogle Scholar
  49. Patt HM, Maloney MA (1970) Reconstitution of bone marrow in a depleted medullary cavity. In: Stohlman F (ed) Hemopoietic cellular proliferation. Grune and Stratton, New York, pp 56–66Google Scholar
  50. Ruff CB, Hayes WC (1983) Cross-sectional geometry of Pecos Pueblo femora and tibiae: a biomechanical investigation. I. Method and general patterns of variation. Am J Phys Anthrop 60: 359–381Google Scholar
  51. Ruth EB (1953) An experimental study of the haversian-type vascular channels. Anat Rec 112: 429–455Google Scholar
  52. Saville P (1969) Changes in skeletal mass and fragility with castration in the rat: a model of osteoporosis. Am Geriatric Soc 17: 155–166Google Scholar
  53. Schoutens A, Verhas M, L’Hermitie-Baleriaux M, L’Hermitie M, Verschaeren A, Dourov N, Mone M, Heilporn A, Tricot A (1984) Growth and bone haemodynamic responses to castration in male rats. Reversibility by testosterone. Acta Endocrinol 107: 428–432Google Scholar
  54. Tang LY, Jee WSS, Ke HZ, Kimmel DB (1992) Restoring and maintaining bone in osteopenic female rat skeleton: I. Changes in bone mass and structure. J Bone Miner Res 7: 1093–1104Google Scholar
  55. Thorngren KG, Hansson LI (1973) Cell kinetics and morphology of the growth plate in the normal and hypophysectomized rat. Calcif Tissue Res 13: 113–129PubMedCrossRefGoogle Scholar
  56. Turner CH (1991) Toward a cure for osteoporosis: reversal of excessive bone fragility. Osteoporosis Int 2: 12–19CrossRefGoogle Scholar
  57. Turner CH (1992) Editorial: functional determinants of bone structure: beyond Wolff’s law of bone transformation. Bone 13: 403–409PubMedCrossRefGoogle Scholar
  58. Turner RT, Vandersteenhoven JJ, Bell NH (1987) The effects of ovariectomy and 17(3-estradiol on bone histomorphometry in growing rats. J Bone Miner Res 2: 115–122PubMedCrossRefGoogle Scholar
  59. Turner RT, Hannon KS, DeMers LM, Bell NH (1989) Differential effects of gonadal function on bone histomorphometry in male and female rats. J Bone Miner Res 4: 557–563PubMedCrossRefGoogle Scholar
  60. Turner RT, Wakley GK, Hannon KS (1990) Differential effects of androgens on cortical bone histomorphometry in gonadectomized male and female rats. J Orthop Res 8: 612–617PubMedCrossRefGoogle Scholar
  61. Ueono K, Naha T, Woodbury D, Price P, Anderson R, Jee WSS (1985) The effects of prostaglandin E2 in rapidly growing rats depressed longitudinal and radial growth and increased metaphyseal hard tissue mass. Bone 6: 79–86CrossRefGoogle Scholar
  62. Verhas M, Schoutens A, L’Hermitie-Baleriaux M, Dourov N, Verschaeren A, Mone M, Heilporn A (1986) The effect of orchiectomy on bone metabolism in aging rats. Calcif Tissue Int 39: 74–77PubMedCrossRefGoogle Scholar
  63. Wakley GK, Turner RT (1991) Sex steroids and the regulation of bone volume in the rat. Cells Materials [Suppl] 1: 85–91Google Scholar
  64. Wakley GK, Schutte HD Jr, Hannon KS, Turner RT (1991) Androgen treatment prevents osteopenia of cancellous bone in the orchiectomized rat. J Bone Min Res 6: 325–330CrossRefGoogle Scholar
  65. Waynford HB (1980) Experimental and surgical technique in the rat. Academic Press, New YorkGoogle Scholar
  66. Wink G, Felts W (1980) Effects of castration on the bone structure of male rats: a model of osteoporosis. Calcif Tissue Int 32: 77–82PubMedCrossRefGoogle Scholar
  67. Wronski TJ, Lowry PL, Walsh C, Ignaszewski LA (1985) Skeletal alterations in ovariectomized rats. Calcif Tissue Int. 37: 324–328PubMedCrossRefGoogle Scholar
  68. Wronski TJ, Walsh C, Ignaszewski LA (1986) Histologic evidence for oseopenia and increased bone turnover in ovarietomized rats. Bone 7: 119–123PubMedCrossRefGoogle Scholar
  69. Wronski TJ, Yen CF (1991) The ovariectomized rat as an animal model for postmenopausal bone loss. Cells Materials [Suppl 1]: 69–74Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Webster S. S. Jee
  • Yanfei F. Ma
  • Mei Li
  • Xiaoquang G. Liang
  • Baiyun Y. Lin
  • Xiaojian J. Li
  • Hua Z. Ke
  • Satoshi Mori
  • Rebecca B. Setterberg
  • Donald B. Kimmel

There are no affiliations available

Personalised recommendations