Skip to main content

The Khalimsky Line as a Foundation for Digital Topology

  • Conference paper
Shape in Picture

Part of the book series: NATO ASI Series ((NATO ASI F,volume 126))

Abstract

An object is defined from which digital spaces can be built. It combines the “one-dimensional connectedness” of intervals of reals with a“point-bypoint” quality necessary for constructing algorithms, and thus serves as a foundation for digital topology. Ideas expressed in quotation marks here are given precise meanings. This study considers the Khalimsky line, that is, the integers, equipped with the topology in which a set is open iff whenever it contains an even integer, it also contains its adjacent integers. It is shown that this space and its interval subspaces are those satisfying the conditions mentioned previously. The Khalimsky line is used to study digital connectedness and homotopy.

The author wishes to acknowledge comments by David Foster, Paul Meyer, and two unknown referees, which led to substantial improvements in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandroff, P. S. (1937). Diskrete Räume, Mat. Sb. 1, pp. 501–519.

    Google Scholar 

  2. Gierz, G., Hofmann, K. H., Keimel, K., Lawson, J. D., Mislove M. and Scott, D. S. (1980). A Compendium of Continuous Lattices, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  3. Khalimsky, E. D., Kopperman, R. D., Meyer, P. R. (1990). Computer graphics and connected topologies on finite ordered sets, Topology and Appl. 36, pp. 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  4. Khalimsky, E. D., Kopperman, R. D., Meyer, P. R. (1990). Boundaries in digital planes, J. of Applied Mathematics and Stochastic Analysis 3, pp. 27–55.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kong, T. Y., Khalimsky, E. D. (1990). Polyhedral analogs of locally finite topological spaces, In: R. M. Shortt (ed.), General Topology and Applications, Proc. 1988 Northeast Conference, Marcel Dekker, NY, pp. 153–164.

    Google Scholar 

  6. Kong, T. Y., Kopperman, R. D., Meyer, P. R. (1991). Using general topology in image processing, Geometric Problems of Image Processing (Vol. 4, Research in Informatics) Akademie Verlag, Berlin, pp. 66–71.

    Google Scholar 

  7. Kong, T. Y., Kopperman, R. D., Meyer, P. R. (1991). A topological approach to digital topology, Am. Math. Monthly 98, pp. 901–917.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kong, T. Y., Kopperman, R. D., Meyer, P. R. (1991). Which Spaces have Metric Analogs?, Gen. Top. and Appl., Lecture Notes 134, Marcel Dekker, pp. 209–216.

    Google Scholar 

  9. Kong, T. Y., Kopperman, R. D., Meyer, P. R. (eds.) (1992). Special issue of Topology and its Applications 46 (3), pp. 173-180.

    Google Scholar 

  10. Kong, T. Y., Rosenfeld, A. (1989). Digital Topology: Introduction and Survey, Computer Vision, Graphics, and Image Processing 48, pp. 357–393.

    Article  Google Scholar 

  11. Kopperman, R. D., Meyer, P. R., Wilson, R. G. (1991). A Jordan surface theorem for three-dimensional digital spaces, Discrete and Computational Geometry 6, pp. 155–162.

    Article  MathSciNet  MATH  Google Scholar 

  12. Kovalevsky, V. A. (1986). On the Topology of Discrete Spaces. Studientexte, Digitale Bildverarbeitung, Heft 93/86, Technische Universität Dresden.

    Google Scholar 

  13. Kovalevsky, V. A. (1989). Finite topology as applied to image analysis, Computer Vision, Graphics and Image Processing 46, pp. 141–161.

    Article  Google Scholar 

  14. Morris, S. A., Topology Without Tears, available from author, Dean of Informatics, University of Wollongong, Wollongong, NSW, 2500, Australia.

    Google Scholar 

  15. Munkres, J. R. (1975). Topology: A First Course, Prentice-Ball, Englewood Cliffs, NJ.

    Google Scholar 

  16. Rosenfeld, A. (1979). Picture Languages, Academic Press, NY.

    Google Scholar 

  17. Simmons, G. F. (1983). Introduction to Topology and Modern Analysis, Krieger, Malabar, FL.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kopperman, R. (1994). The Khalimsky Line as a Foundation for Digital Topology. In: O, YL., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P. (eds) Shape in Picture. NATO ASI Series, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03039-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03039-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08188-0

  • Online ISBN: 978-3-662-03039-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics