Skip to main content

Can Categorical Shape Theory Handle Grey-level Images?

  • Conference paper

Part of the book series: NATO ASI Series ((NATO ASI F,volume 126))

Abstract

Categorical shape theory can be considered as a formal model of a recognition process, but can it handle grey-level images? In this paper, some of the available pure mathematics, mostly from topology and category theory, that may be useful in this context are considered and the feasibility of such a model is discussed both from the machine-implementation viewpoint and a biological one.

The author would like to thank Gavin Wraith for providing an explanation of Lawvere’s ideas on metric spaces and Andrée Charles Ehresmann for discussions of her ideas on the modelling of brain functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib, M.A. (1987). Brains, Machines and Mathematics, 2nd Edition, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  2. Barwise, J. (1991). Information links in domain theory, Indiana University Logic Group, Preprint No. IULG-91–7.

    Google Scholar 

  3. Bénabou, J. (1973). Les distributeurs, Rapport 33, Inst. Math. Pure Appl. Univ. Louvain-la-Neuve.

    Google Scholar 

  4. Bourn, D., Cordier, J.-M., (1980). Distributeurs et théorie de la forme, Cahiers Top. et Géom. Diff. 21, pp. 161–189.

    MathSciNet  MATH  Google Scholar 

  5. Casley, R., Crew, R.F., Meseguer, J., Pratt, V. (1991). Temporal structures, Math. Struct. in Comp. Science 1, pp. 179–213

    Google Scholar 

  6. Cordier, J.-M., Porter, T. (1989). Shape Theory: Categorical Methods of Approximation, Ellis Horwood, Chichester, UK.

    Google Scholar 

  7. Duda, R.O., Fossum, H. (1966). Pattern classification by iteratively determined linear and piecewise linear discriminant functions. IEEE Transactions on Electronic Computers EC-15, pp. 220–232.

    Google Scholar 

  8. Ehresmann, A.C., Vanbremeersch, J.-P. (1987). Hierarchical evolutive systems: a mathematical model for complex systems, Bull. Math. Biol. 49, pp. 13–50.

    MathSciNet  MATH  Google Scholar 

  9. Ehresmann, A.C., Vanbremeersch, J.-P. (1987). A Mathematical model for complex systems, II: trial and error dynamics with hierarchical modulation. Preprint.

    Google Scholar 

  10. Ehresmann, A.C., Vanbremeersch, J.-P. (1989). Modèle d’interaction dynamique entre un système complexe et des agents, Revue Intern. Systémique 3, pp. 315–341.

    Google Scholar 

  11. Ehresmann, A.C., Vanbremeersch, J.-P. (1989). Systèmes hiérarchiques évolutifs à mémoire auto-régulée synergie et cohérence dans les systèmes biologiques, Séminaire Transdisciplinaire, Centre Interuniversitaire Jussieu - St.Bernard, Mai.

    Google Scholar 

  12. Ehresmann, A.C., Vanbremeersch, J.-P. (1990). Hierarchical evolutive systems, 8th International Conference of Cybernetics and Systems, New York.

    Google Scholar 

  13. Ehresmann, A.C., Vanbremeersch, J.-P. (1991). Un modèle pour des systèmes évolutifs avec mémoire basé sur la théorie des catégories, Revue Intern. Systémique, 5 (1), pp. 5–25.

    MATH  Google Scholar 

  14. Ehresmann, A.C., Vanbremeersch, J.-P. (1992). Semantics and communication for memory evolutive systems, 6th International Conference on Systems Research, Informatics and Cybernetics, Baden-Baden.

    Google Scholar 

  15. Ehrich, H.-D., Goguen, J.A., Sernadas, A. (1990). A categorical theory of objects as observed processes, Proc. REX/FOOL, Noordwijkerhout.

    Google Scholar 

  16. Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks, Neural Networks 2, pp. 183–192.

    Article  Google Scholar 

  17. Girard, J.-Y. (1987). Linear logic, Theoret. Comput. Sci. 50, pp. 1–102.

    MathSciNet  MATH  Google Scholar 

  18. Girard, J.-Y. (1989). Towards a geometry of interaction, In: Gray, J.W. and Scedrov, A., (eds.), Categories in Computer Science and Logic, Boulder, June 1987, Vol. 92 of Contemporary Mathematics, American Mathematical Society, pp. 69108.

    Google Scholar 

  19. Goguen, J.A. (1991). A categorical manifesto, Math. Struct. in Computer Science 1, pp. 49–67.

    Google Scholar 

  20. Goguen, J.A. (1992). Sheaf semantics for concurrent interacting objects, Math. Struct. in Comp. Science, 2, pp. 159–191.

    Google Scholar 

  21. Goldblatt, R. (1984). Topoi, the Categorical Analysis of Logic, North-Holland, Amsterdam.

    Google Scholar 

  22. Heijmans, H.J.A.M. (1987). Mathematical morphology: an algebraic approach, CWI Newsletter 14, pp. 7–27.

    MathSciNet  MATH  Google Scholar 

  23. Heijmans, H.J.A.M. (1993). Mathematical morphology as a tool for shape description, this volume, pp. 147–176.

    Google Scholar 

  24. Hopfield, J.J. (1984). Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Nat. Acad. Sci. USA, 81, pp. 3088–3092.

    Article  Google Scholar 

  25. Hornik, K., Stinchcombe, M., White, H. (1989). Multilayer feedforward networks are universal approximators, Neural Networks 2, pp. 359–366.

    Article  Google Scholar 

  26. Hornik, K., Stinchcombe, M., White, H. (1990). Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks, Neural Networks 3, pp. 551–560.

    Article  Google Scholar 

  27. Husek, M. (1993). Introduction to categorial shape theory, with applications in mathematical morphology, this volume, pp. 91–110.

    Google Scholar 

  28. Johnstone, P.T. (1977). Topos Theory, Academic Press.

    Google Scholar 

  29. Lambek, J. (1968). Deductive systems and categories I, Math. Sys. Theory 2, pp. 287–318.

    Article  MathSciNet  MATH  Google Scholar 

  30. Lawvere, F.W. (1969). Adjointness in foundations, Dialectica 23, pp. 281–318.

    Article  MATH  Google Scholar 

  31. Lawvere, F.W. (1973). Metric spaces, generalized logic and closed categories, in Rendiconti del Seminario Matematico e Fisico di Milano XLIII, Tipografia, Pavia.

    Google Scholar 

  32. Lipmann, R.P. (1987). An introduction to computing with neural nets, IEE ASSP Magazine 4, pp. 4–22.

    Article  Google Scholar 

  33. Livingstone, M.S., Hubel, D.H. (1988). Segregation of form, color movement and depth: anatomy, physiology, and perception, Science 240, pp. 740–749.

    Article  Google Scholar 

  34. Mac Lane, S. (1971). Categories for the Working Mathematician, Grad. Texts in Mathematics 5, Springer-Verlag, Berlin.

    Book  Google Scholar 

  35. Malsberg, C. van der, Bienenstock, E. (1986). Statistical coding and short-term synaptic plasticity: a scheme for knowledge representation in the brain. In: Disordered Systems and Biological Organisation, NATO ASI Series F, vol. 20, Springer-Verlag, Berlin.

    Google Scholar 

  36. Mardesié, S., Segal, J. (1982). Shape Theory, the Inverse Systems Approach, North-Holland Mathematical Library vol 26, North-Holland, Amsterdam.

    Google Scholar 

  37. Marti-Oliet, N., Meseguer, J. (1991). From Petri nets to linear logic, Math. Struct. in Comp. Science 1, pp. 69–101.

    Google Scholar 

  38. Mattioli, J., Schmitt, M. (1993). On information contained in the erosion curve, this volume, pp. 177–195.

    Google Scholar 

  39. Meseguer, J., Montanari, U. (1990). Petri nets are monoids, Information and Computation 88, pp. 105–155

    Article  MathSciNet  MATH  Google Scholar 

  40. Mink’o, A. A., Petunin, Y. (1981). Mathematical modeling of short-term memory, Kibernetika 2, pp. 282–297.

    Google Scholar 

  41. Minsky, M.L., Papert, S. (1969). Perceptrons: an Essay in Computational Geometry, MIT Press, Cambridge, MA.

    Google Scholar 

  42. Moggi, E. (1991). A category-theoretic account of program modules, Math. Struct. in Comp. Science 1, pp. 103–139.

    Google Scholar 

  43. Noest, A. (1993). Neural processing of overlapping shapes, this volume, pp. 383392.

    Google Scholar 

  44. Pavel, M. (1991). Fundamentals of Pattern Recognition, Monographs and Textbooks in Pure and Applied Mathematics, 124, Marcel Dekker, New York.

    Google Scholar 

  45. Porter, T. (1993). Categorical shape theory as a formal language for pattern recognition, Annals of Maths. and Artificial Intelligence, special issue on “Mathematics in Pattern Recognition”, to appear.

    Google Scholar 

  46. Ronse, C. (1989). Fourier analysis, mathematical morphology, and vision, PRLB, Working Document WD54, November.

    Google Scholar 

  47. Segal, J. (1993). Shape theory: an ANR-sequence approach, this volume, pp. 111125.

    Google Scholar 

  48. Vanbremeersch, J.-P., Ehresmann, A.C. (1989). A model for a neural system based on category theory, 2nd International Symposium on Systems Research, Informatics and Cybernetics.

    Google Scholar 

  49. Vickers, S. (1989). Topology via Logic, Cambridge Tracts in Theoretical Computer Science 5, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  50. Zhang, J. (1993). Image representation using affine covariant coordinates, this volume, pp. 353–362.

    Google Scholar 

  51. Zhang, J., Wu, S. (1990). Structure of visual perception, Proc. Nat. Acad. Sci., 87, pp. 7819–7823.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Porter, T. (1994). Can Categorical Shape Theory Handle Grey-level Images?. In: O, YL., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P. (eds) Shape in Picture. NATO ASI Series, vol 126. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03039-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03039-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08188-0

  • Online ISBN: 978-3-662-03039-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics