Skip to main content

Nongenotoxic Mechanisms in Thyroid Carcinogenesis

  • Conference paper
Nongenotoxic Carcinogenesis

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 10))

  • 35 Accesses

Abstract

Nongenotoxic mechanisms of thyroid carcinogenesis are of general application and also of potential importance to regulatory toxicology. To understand the way in which administration of xenobiotics can lead to thyroid tumours through a nongenotoxic mechanism it is necessary first to consider the pathophysiology of the thyroid gland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander NM, Burrow GN (1970) Thyroxine biosynthesis in human goitrous cretinism. J Clin Endocrinol Metab 30: 308–315

    Article  PubMed  CAS  Google Scholar 

  • Ambesi-Impiombato FS, Parks LAM, Coon HG (1980) Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci USA 77: 3455–3459

    Article  PubMed  CAS  Google Scholar 

  • Atterwill CK, Jones C, Brown CG (1992) Thyroid gland II — mechanisms of species-dependent thyroid toxicity, hyperplasia and neoplasia induced by xenobiotics. In: Atterwill CK, Flack JD (eds) Endocrine toxicology. Cambridge University Press, Cambridge, pp 137–182

    Google Scholar 

  • Axelrad AA, Leblond CP (1955) Induction of thyroid tumors in rats by a low iodine diet. Proc Am Assoc Cancer Res 1: 2

    Google Scholar 

  • Bastomsky C H (1974) Effects of a polychlorinated biphenyl mixture (Ara-chlor 1254) and DDT on the biliary thyroxine excretion in rats. Endocrinology 95: 1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Baverstock K, Egloff B, Pinchera A, Ruchti C, Williams ED (1992) Thyroid cancer after Chernobyl. Nature 349: 21–22

    Article  Google Scholar 

  • Becks GP, Eggo MC, Burrow GN (1988) Organic iodine inhibits deoxyribonucleic acid synthesis and growth in FRTL-5 thyroid cells. Endocrinology 123: 545–551

    Article  PubMed  CAS  Google Scholar 

  • Berry MJ, Banu L, Chen Y, Mandel SJ, Kieffer JD, Harney JW, Larsen PR (1991) Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3’ untranslated region. Nature 353: 273–276

    Article  PubMed  CAS  Google Scholar 

  • Bongarzone I, Pierotti MA, Monzini N, Mondellini P, Manenti G, Donghi R, Pilotti S, Grieco M, Santoro M, Fusco A, Vecchio G, Della Porta G (1989) High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 4: 1457–1462

    PubMed  CAS  Google Scholar 

  • Bray GA (1968) Increased sensitivity of the thyroid in iodine-depleted rats to the goitrogenic effects of thyrotrophin. J. Clin Invest 47: 1640–1647

    Article  PubMed  CAS  Google Scholar 

  • de Groot LJ (1988) Radiation and thyroid disease. Ballieres Clin Endocrinol Metab 2: 777–791

    Article  Google Scholar 

  • de Vijlder JJM, van Voorthuizen WF, van Dijk JE, Rijnberk A, Telegaers WHH (1978) Hereditary congenital goiter with thyroglobulin deficiency in a breed of goats. Endocrinology 102: 1214–1222

    Article  PubMed  Google Scholar 

  • Di Renzo MF, Olivero M, Ferro S, Prat M, Bongarzone I, Pilotti S, Belfiore A, Costantino A, Vigneri R, Pierotti MA (1992) Overexpression of the cmet/HGF receptor gene in human thyroid carcinomas. Oncogene 7: 25492553

    Google Scholar 

  • Donghi R, Longoni A, Pilotti S, Michieli P, Della Porta G, Pierotti MA (1993) Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas of the thyroid gland. J Clin Invest 91: 1753–1760

    Article  PubMed  CAS  Google Scholar 

  • Doniach I (1950) The effect of radioactive iodine alone and in combination with methylthiourea and acetylaminofluorene upon tumour production in the rats thyroid gland. Br J Cancer 4: 223–234

    Article  PubMed  CAS  Google Scholar 

  • Doniach I (1953) The effect of radioactive iodine alone and in combination with methylthiouracil upon tumour production in the rats thyroid gland. Br J Cancer 7: 181–202

    Article  PubMed  CAS  Google Scholar 

  • Doniach I (1957) Comparison of the carcinogenic effect of X-irradiation with radioactive iodine on the rats thyroid. Br J Cancer 11: 67–76

    Article  PubMed  CAS  Google Scholar 

  • Doniach I (1974) Carcinogenic effect of 100, 200, 250 and 500 rad X-rays on the rat thyroid gland. Br J Cancer 30: 487–495

    Article  PubMed  CAS  Google Scholar 

  • Dunn TB (1975) The unseen fight against cancer: experimental cancer research: its importance to human cancer. Bates, Charlotte, p 111

    Google Scholar 

  • Ekpechi OL, Dimitriadou A, Fraser R (1966) Goitrogenic activity of cassava (a staple Nigerian food). Nature 210: 1137–1138

    Article  PubMed  CAS  Google Scholar 

  • Ermans AM (1978) Disorders of iodine deficiency: endemic goiter. In: Werner SC, Ingbar SH (eds) The thyroid. Harper and Row, New York, pp 537–553

    Google Scholar 

  • Escobar del Rey F, Morreale de Escobar (1961) The effect of propylthiouracil, methylthiouracil and thiouracil on the peripheral metabolism of 1-thyronine in thyroidectomised,1-thyronine maintained rats. Endocrinology 69: 456–465

    Article  Google Scholar 

  • Fagin JA, Matsuo K, Karmarkar A, Chen DL, Tang SH, Koeffler HP (1993) High prevalence of mutations of the p53 gene in poorly differentiated human thyroid carcinomas. J Clin Invest 91: 179–184

    Article  PubMed  CAS  Google Scholar 

  • Falconer IR, Roitt IM, Seamark RF, Torrigiani G (1965) Studies of the congenitally goitrous sheep. Iodoproteins of the goitre. Biochem J 117: 417424

    Google Scholar 

  • Flack JD, Hakansson S, Jeffery DJ, Kelvin AS, Maile PA, McCurrdo AS, Perkins CI (1989) Investigation of the effects of diproteverine on the thyroid of the rat. Hum Toxicol 8: 411

    Article  Google Scholar 

  • Gaitan E (1988) Goitrogens. Ballieres Clin Endocrinol Metab 2:683–702 Gartner R, Greil W (1986) The mitogenic activity of IGF1, insulin and EGF on

    Google Scholar 

  • isolated porcine thyroid follicles under negative control of TSH and cAMP.

    Google Scholar 

  • Ann Endocrinol 47:66A

    Google Scholar 

  • Gmelin R, Virtanen AI (1960) The enzymatic formation of thiocyanate ( SCN) from a precursor in Brassica species. Acta Chem Scand 14: 507

    Google Scholar 

  • Greer MA, Studer H, Kendall JW (1967) Studies on the pathogenesis of colloid goiter. Endocrinology 81: 623–632

    Article  PubMed  CAS  Google Scholar 

  • Griesbach WE, Kennedy TH, Purves HD (1945) Studies on experimental goitre VI: thyroid adenomata in rats on Brassica seed diet. Br J Exp Pathol 26: 18–24

    CAS  Google Scholar 

  • Grubeck-Loewenstein B, Buchan G, Sadeghi R, Kissonerghis M, Londei M, Turner M, Pirich, Roka R, Niederle B, Kassal H, Waldhausal W, Feldman M (1989) Transforming growth factor ß regulates thyroid growth. J. Clin. Invest. 83: 764–770

    Google Scholar 

  • Heldin NE, Westermark B (1991) The molecular biology of the human ana-plastic thyroid carcinoma cell. Thyroidol Clin Exp 3: 127–131

    PubMed  CAS  Google Scholar 

  • Hiasa Y, Ohshima M, Kiathori Y, Yuasa T, Fujita T, Iwata C (1982) Promoting effects of 3, amino -1,2,4-triazole on the development of thyroid tumors in rats treated with N-bis (2-hydroxypropyl) nitrosamine. Carcinogenesis 3: 381–384

    Article  PubMed  CAS  Google Scholar 

  • Hill RN, Erdreich LS, Paynter 0E, Roberts PA, Rosenthal SL, Wilkinson CF (1989) Thyroid follicular cell carcinogenesis. Fund Appl Toxicol 12: 629697

    Google Scholar 

  • Jemec B (1977) Studies on the goitrogenic and tumorigenic effect of two goitrogens. Cancer 40: 2188–2202

    Article  PubMed  CAS  Google Scholar 

  • Jemec B (1980) Studies on the goitrogenic and tumourigenic effect of two goitrogens in combination with hypophysectomy or thyroid hormone treatment. Cancer 45: 2138–2148

    Article  PubMed  CAS  Google Scholar 

  • Kohrle J, Hesch RD, Leonard JL (1991) Intracellular pathways of iodothyronine metabolism. In: Braverman LE, Utiger RD (eds) The thyroid. Lipincott, New York, pp 144–189

    Google Scholar 

  • Lazarus JH (1986) Endocrine and metabolic effects of lithium. Plenum, New York

    Google Scholar 

  • Ledent C, Dumont JE, Vassart G, Parmentier M (1991) Thyroid adenocarcinomas secondary to tissue-specific expression of simian virus-40 large T antigen in transgenic mice. Endocrinology 129: 1391–1401

    Article  PubMed  CAS  Google Scholar 

  • Ledent C, Dumont JE, Vassart G, Parmentier M (1992) Thyroid expression of an A2 adenosine receptor transgene induces thyroid hyperplasia and hyperthyroidism. EMBO J 11: 537–542

    PubMed  CAS  Google Scholar 

  • Lemoine NR, Mayall ES, Williams ED, Thurston V, Wynford-Thomas D (1988) Agent-specific ras oncogene activation in rat thyroid. Oncogene 3: 541–544

    PubMed  CAS  Google Scholar 

  • Lemoine NR, Mayall ES, Wyllie FS, Williams ED, Goyns M, Stringer B, Wynford-Thomas D (1989) High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4: 159–164

    PubMed  CAS  Google Scholar 

  • Maciel RMB, Moses AC, Villon G, Tramontano D, Ingbar SH (1988) Demonstration of the production and physiological role of insulin-like growth factor II in rat thyroid follicular cells in culture. J Clin Invest 82: 1546–1553

    Article  PubMed  CAS  Google Scholar 

  • Maloof F, Dobyns B, Vickery AL (1952) The effects of various doses of radioactive iodine on the function and structure of the thyroid of the rat. Endocrinology 50: 612–638

    Article  PubMed  CAS  Google Scholar 

  • Many MC, Denef JP, Gathy P, Haumont S (1983) Morphological and functional changes during thyroid hyperplasia and involution in C3H mice: evidence for folliculogenesis during involution. Endocrinology 112: 1292–1302

    Article  PubMed  CAS  Google Scholar 

  • Matovinovic J, Nishiyama RH, Poissant G (1970) Transplantable thyroid tumours in the rat: development of normal appearing thyroid follicles in the differentiated tumors, and development of differentiated tumors from iodine-deficient, thyroxine involuted goiters. Cancer Res 30: 504–514

    PubMed  CAS  Google Scholar 

  • McClain RM (1989) The significance of microsomal enzyme induction and altered thyroid function in rats: implications for thyroid gland neoplasia. Toxicol Pathol 17: 294–306

    Article  PubMed  CAS  Google Scholar 

  • Mohr U, Reznik G, Pour P (1977) Carcinogenic effects of diisopanolnitrosamine in Sprague-Dawley rats. JNCI 58: 361–366

    PubMed  CAS  Google Scholar 

  • Mulligan LM, Kwok JBJ, Healey CS, Eisdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L, Ponder MA, Telenius H, Tunnacliffe A, Ponder BAJ (1993) Germ-line mutations of the ret proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363: 458–460

    Article  PubMed  CAS  Google Scholar 

  • Murthy ASK (1980) Morphology of the neoplasms of the thyroid gland in Fischer 344 rats treated with 4,4’-methylene-bis-(N,N’-dimethyl)-benzylamine. Toxicol Lett 6: 391–397

    Article  PubMed  CAS  Google Scholar 

  • Nadler NJ, Mandavia M, Goldberg M (1970) The effect of hypophysectomy on the experimental production of rat thyroid neoplasia. Cancer Res 30: 1909–1911

    PubMed  CAS  Google Scholar 

  • Nagataki S, Ingbar SH (1986) Autoregulation: effects of iodide. In: Ingbar SH, Braverman LE (eds) The thyroid. Lippincott, Philadelphia, pp 319–330

    Google Scholar 

  • Nakamura T, Yana I, Kobayashi T, Shin E, Karakawa K, Fujita S, Miya A, Mori T, Nishisho I, Takai S (1993) p53 gene mutations associated with anaplastic transformation of human thyroid carcinomas. Jpn J Cancer Res 83: 1293–1298

    Google Scholar 

  • Nichols CW, Lindsay S, Sheline GE, Chaikoff IL (1965) Induction of neoplasms in rat thyroid glands by X-irradiation of a single lobe. Arch Pathol 80: 177–183

    PubMed  Google Scholar 

  • Northcutt RC, Steil JN, Hollifield JW, Stant EG (1969) The influence of cholestyramine on thyroxine absorption. JAMA 208: 1857–1861

    Article  PubMed  CAS  Google Scholar 

  • Paynter 0E, Burin GJ, Jaeger RB, Gregorio CA (1988) Goitrogens and thyroid follicular cell neoplasia: evidence for a threshold process. Regul Toxicol Pharmacol 8: 102–119

    Google Scholar 

  • Pisarev MA, Chazenbalk GD, Velecchi RM et al. (1986) Action of iodinated derivatives of arachiodonic acid on thyroid growth and cyclic AMP content: possible role in the autoregulatory mechanism. Ann Endocrinol 47: 121A

    Google Scholar 

  • Refetoff S, Larsen PR (1989) Transport, cellular uptake and metabolism of thyroid hormones. In: De Groot L (ed) Endocrinology, vol I. Saunders, Philadelphia, pp 541–561

    Google Scholar 

  • Roger PP, Dumont JE (1984) Factors controlling proliferation and differentiation of canine thyroid cells cultured in reduced serum conditions: effects of thyrotropin, cyclic AMP and growth factors. Mol Cell Endocrinol 36: 79–93

    Article  PubMed  CAS  Google Scholar 

  • Roger PP, Servais P, Dumont JE (1983) Stimulation by thyrotropin and cyclic AMP of the proliferation of quiescent canine thyroid cells cultured in a defined medium containing insulin. FEBS Lett 157: 323–329

    Article  PubMed  CAS  Google Scholar 

  • Salvatore G, Stanbury JB, Rall JE (1980) Inherited defects of thyroid hormone biosynthesis. In: De Visscher M (ed) Comprehensive endocrinology: the thyroid gland. Raven, New York, pp 443–487

    Google Scholar 

  • Saunders JE, Eigenburg DA, Bracht LE, Wang WR, van Zweiten MJ (1988) Thyroid and liver trophic changes in rats secondary to microsomal enzyme induction caused by an experimental leukotriene antagonist (L-649,923). Toxicol Appl Pharmacol 5: 378–387

    Article  Google Scholar 

  • Schaller RT, Stevenson JK (1966) Development of carcinoma of the thyroid in iodine-deficient rats. Cancer 19: 1063–1080

    Article  PubMed  Google Scholar 

  • Smith P, Wynford-Thomas D, Stringer BMJ, Williams ED (1986) Growth factor control of rat thyroid follicular cell proliferation. Endocrinology 119: 1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Stanbury JB, Chapman EM (1960) Congenital hypothyroidism with goitre: absence of an iodide concentrating mechanism. Lancet i: 1162–1165

    Google Scholar 

  • Stanbury JB, Hedge AN (1950) A study of a family of goitrous cretins. J ClinEndocrinol 10: 1741–1758

    Google Scholar 

  • Stanbury JB, Morris (1958) Deiodination of di-iodotyrosine by cell-free systems. J Biol Chem 233: 106–108

    CAS  Google Scholar 

  • Story DL, Cardona RA, Lengen MR (1993) Effect of dietary PCNB on circulating levels of T3 and T4 and TSH in rats. Toxicologist 13: 1446

    Google Scholar 

  • Taurog A (1976) The mechanism of action of the thiourylene antithyroiddrugs. Endocrinology 98: 1031–1046

    Article  PubMed  CAS  Google Scholar 

  • Thilly CH, Swennen B, Bourdoux P, Ntambue K, Moreno-Royes R, Gillies J, Vanderpas JB (1993) The epidemiology of iodine-deficiency disorders in relation to goitrogenic factors and thyroid stimulting hormone regulation. Am J Clin Nutr 57: 2675–2705

    Google Scholar 

  • Thomas JA, Bell JU (1982) Endocrine toxicology. In: Hayes AW (ed) Principles and methods in toxicology. Raven, New York, pp 487–496

    Google Scholar 

  • Thomas GA, Williams ED (1991) Evidence for and possible mechanisms of a non-genotoxic carcinogenesis in the rodent thyroid. Mutat Res 248: 357370

    Google Scholar 

  • Thomas GA, Williams ED (1992) Production of thyroid tumours in mice by demethylating agents. Carcinogenesis 13: 1039–1042

    Article  PubMed  CAS  Google Scholar 

  • Thomas GA, Williams ED (1994) Age related changes in structure and function of the thyroid follicular cell. In: Capen CC, Mohr U (eds) Pathology of the aging rat, vol 2. ILSI, Washington, pp 269–283

    Google Scholar 

  • Thomas GA, Williams D, Williams ED (1988) The demonstration of tissue clonality by X-linked enzyme histochemistry. J Pathol 155: 101–108

    Article  PubMed  CAS  Google Scholar 

  • Thomas GA, Williams D, Williams ED (1989) The clonal origin of thyroid nodules and adenomas. Am J. Pathol 134: 141–147

    Google Scholar 

  • Thomas GA, Williams D, Williams ED (1991) Reversibility of the malignant phenotype in monoclonal thyroid tumours in the mouse. Br J Cancer 63: 213–216

    Article  PubMed  CAS  Google Scholar 

  • Thomas GA, Davies HG, Williams ED (1994) Expression of IGF1 in the normal and short-term goitrogen treated mouse thyroid. J Pathol (in press) Todd GC (1986) Induction and reversibility of thyroid proliferative changes inrats given an antithyroid compound. Vet Pathol 23:110–117

    Google Scholar 

  • Tsuda H, Fukunshima S, Imaida K, Kurata Y, Ito N (1983) Organ-specific promoting effect of phenobarbital and saccharin in induction of thyroid, liver and bladder tumors in rats after initiation with N-nitrosomethylurea. Cancer Res 43: 3292–3296

    PubMed  CAS  Google Scholar 

  • Van Jaarsveld P, van der Walt B, Theron CN 91972) Afrikander cattle congenital goiter: purification and partial identification of the complex iodoprotein pattern. Endocrinology 91: 470–482

    Google Scholar 

  • Van Sande J, Dumont JE (1973) Effects of thyrotropin, prostaglandin El and iodide on cyclic 3’S’AMP concentration in dog thyroid slices. Biochim Biophys Acta 313: 320

    Article  PubMed  Google Scholar 

  • Vickery AL (1981) The diagnosis of malignancy in dyshormonogenetic goitre. Clin Endocrinol Metab 10: 317–335

    Article  PubMed  Google Scholar 

  • Westermark B, Karlson FA, Walinder D (1979) Thyrotropin is not a growth factor for human thyroid cells in culture. Proc Natl Acad Sci USA 76: 2022–2026

    Article  PubMed  CAS  Google Scholar 

  • Williams DW, Wynford-Thomas D, Williams ED (1987) Control of human thyroid follicular cell proliferation in suspension and monolayer culture. Mol Cell Endocrinol 51: 33–40

    Article  PubMed  CAS  Google Scholar 

  • Williams DW, Williams ED, Wynford-Thomas D (1988) Loss of dependence on IGF-1 for proliferation of human thyroid adenoma cells. Br J Cancer 57: 535–539

    Article  PubMed  CAS  Google Scholar 

  • Williams DW, Williams ED, Wynford-Thomas D (1989) Evidence for auto-crine production of IGF-1 in human thyroid adenomas. Mol Cell Endocrinol 61: 139–143

    Article  PubMed  CAS  Google Scholar 

  • Williams ED, Doniach I (1963) Thyroid autografts in hypophysectomised and thyroxine treated rats. J Endocrinol 26: 479–488

    Article  PubMed  CAS  Google Scholar 

  • Williams ED, Doniach I, Bjarnason O, Michie W (1977) Thyroid cancer in an iodide rich area. Cancer 39: 215–222

    Article  PubMed  CAS  Google Scholar 

  • Wolff J, Maurey J (1961) Thyroidal iodide transport II. Comparison with non-thyroid iodide concentrating tissues. Biochim Biophys Acta 47: 467–474

    Google Scholar 

  • Wollman SH, Breitman TR (1970) Changes in DNA and weight of thyroidglands during hyperplasia and involution. Endocrinology 86: 322–327

    Article  PubMed  CAS  Google Scholar 

  • Wynford-Thomas D, Stringer BMJ, Williams ED (1982a) Goitrogen induced thyroid growth in the rat: a quantitative morphometric study. J Endocrinol 94: 131–140

    Article  PubMed  CAS  Google Scholar 

  • Wynford-Thomas D, Stringer BMJ, Williams ED (1982b) Dissociation of growth and function in the rat thyroid during prolonged goitrogen administration. Acta Endocrinol (Copenh) 101: 210–216

    CAS  Google Scholar 

  • Wynford-Thomas D, Stringer BMJ, Williams ED (1982c) Desensitisation of rat thyroid to the growth stimulating action of TSH during prolonged goitrogen administration. Acta Endocrinol (Copenh) 101: 562–569

    CAS  Google Scholar 

  • Wynford-Thomas D, Stringer BMJ, Harach HR, Williams ED (1985) Mitotic response in goitrous and normal rat thyroid: implications for thyroid growth control. Cell Tissue Kinet 18: 467–473

    PubMed  CAS  Google Scholar 

  • Wyngaarden JB, Stanbury JB, Rapp B (1953) The effect of iodide, perchlorate, thiocyanate and nitrate administration upon the iodide concentrating mechanism of the rat thyroid. Endocrinology 52: 568–574

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Andrew Cockburn Lewis Smith

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Thomas, G. (1994). Nongenotoxic Mechanisms in Thyroid Carcinogenesis. In: Cockburn, A., Smith, L. (eds) Nongenotoxic Carcinogenesis. Ernst Schering Research Foundation Workshop, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03022-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03022-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03024-0

  • Online ISBN: 978-3-662-03022-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics