Skip to main content

Cytochrome P450 in Human Drug Metabolism: How Much Is Predictable?

  • Conference paper
Assessment of the Use of Single Cytochrome P450 Enzymes in Drug Research

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 13))

Abstract

Cytochrome P450 (CYP) mono-oxygenases represent one of the major enzyme systems that determine the organism’s capability of dealing with drugs and chemicals. Studies over the past 20 years have provided evidence that cytochromes P450 occur in many different forms (isoforms or isozymes) which differ in spectral, chemical, and immunological properties and have different substrate affinities. These isozymes also differ in their regulation and tissue distribution. Recombinant DNA studies indicate that between 50 and 200 structural genes may code for different cytochrome P450 isozymes in a single organism. Close to 30 human cytochrome P450 genes have now been characterized. The multiplicity of P450 isozymes explains in part the literally thousands of substrates known to be metabolized by this system (for review, see Nelson et al. 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersson T, Miners JO, Veronese ME, Tassaneeyakul W, Meyer UA, Birkett DJ (1993) Identification of human liver cytochrome P450 isoforms mediating omeprazole metabolism. Br J Clin Pharmacol 36: 521–530

    Article  PubMed  CAS  Google Scholar 

  • Bargetzi MJ, Aoyama T, Gonzalez FJ, Meyer UA (1989) Lidocaine metabolism in human liver by cytochrome P450IIIA4 (PCN1). Clin Pharmacol Ther 46: 521–527

    Article  PubMed  CAS  Google Scholar 

  • Broly F, Gaedigk A, Heim M, Eichelbaum M, Mörike K, Meyer UA (1991) Debrisoquine/sparteine hydroxylation genotype and phenotype: analysis of common mutations and alleles of CYP2D6 in a European population. DNA Cell Biol 10: 545–558

    Article  PubMed  CAS  Google Scholar 

  • Daly AK, Cholerton S, Gregory W, Idle JR (1993) Metabolic polymorphisms. Pharmacol Ther 57: 129–160

    Article  PubMed  CAS  Google Scholar 

  • DeMorais SMF, Wilkinson GR, Blaisdell J, Nakamura K, Meyer UA, Goldstein JA (1994) The major genetic defect responsible for thepolymorphism of S-mephenytoin metabolism in humans. J Biol Chem 269: 15422–15422

    Google Scholar 

  • Fonné-Pfister R, Meyer UA (1988) Xenobiotic and endobiotic inhibitors of cytochrome P450db1 function, the target of the debrisoquine/sparteine type polymorphism. Biochem Pharmacol 37: 3829–3835

    Article  PubMed  Google Scholar 

  • Gascon MP, Dayer P (1991) In vitro forecasting of drugs which may interfere with the biotransformation of midazolam. Eur J Clin Pharmacol 41: 573–578

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JA, Faletto MB, Romkes-Sparks M, Sullivan T, Kitareewan S, Raucy JL, Lasker JM, Ghanayem BI (1994) Evidence that CYPC19 is the major s-mephenytoin 4’hydroxylase in humans. Biochemistry (in press)

    Google Scholar 

  • Gonzalez FJ (1992) Human cytochromes P450: problems and prospects. Trends Pharmacol Sci 13: 346–352

    Article  PubMed  CAS  Google Scholar 

  • Guengerich FP, Müller-Enoch D, Blair IA (1986) Oxidation of quinidine by human liver cytochrome P-450. Mol Pharmacol 30: 287–295

    PubMed  CAS  Google Scholar 

  • Heim M, Meyer UA (1990) Genotyping of poor metabolizers of debrisoquine by allele-specific PCR amplification. Lancet 336: 529–532

    Article  PubMed  CAS  Google Scholar 

  • Johansson I, Lundqvist E, Bertilsson L, Dahl M-L, Sjoeqvist F, IngelmanSundberg M (1993) Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 90: 11825–11829

    Article  PubMed  CAS  Google Scholar 

  • Kalow W (1992) Pharmacogenetics of drug metabolism international encyclopedia of pharmacology and therapeutics (executive editor AC Sartorelli). Pergamon, London

    Google Scholar 

  • Kalow W, Goedde HW, Agarwal DP (1986) Ethnic differences in reactions to drugs and xenobiotics. Liss, New York

    Google Scholar 

  • Kronbach T, Fischer V, Meyer UA (1988) Cyclosporine metabolism in human liver: identification of a cytochrome P450 of the P450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 43: 630–635

    Article  PubMed  CAS  Google Scholar 

  • Kronbach T, Mathys D, Umeno M, Gonzalez FJ, Meyer UA (1989) Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 36: 89–96

    PubMed  CAS  Google Scholar 

  • Meier PJ, Mueller HK, Dick B, Meyer UA (1983) Hepatic monooxygenase activities in subjects with a genetic defect in drug oxidation. Gastroenterology 85: 682–692

    PubMed  CAS  Google Scholar 

  • Meyer UA (1994) Pharmacogenetics: the slow, the rapid, and the ultrarapid. Proc Natl Acad Sci USA 91 (in press)

    Google Scholar 

  • Meyer UA, Zanger UM, Grant D, Blum M (1990) Genetic polymorphisms of drug metabolism. In: Testa B (ed) Advances in drug research, vol 19. Academic, London, pp 307–23

    Google Scholar 

  • Nelson DR, Kamataki T, Waxman DJ, Guengerich FP, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert DW (1993) the P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12: 1–51

    Google Scholar 

  • Okey AB (1990) Enzyme induction in the cytochrome P450 system. Pharmacol Ther 45: 241–298

    Article  PubMed  CAS  Google Scholar 

  • Waxman DJ, Azaroff L (1992) Phenobarbital induction of cytochrome P450 gene expression. Biochem J 281: 577–592

    PubMed  CAS  Google Scholar 

  • Whitlock JP (1993) Mechanistic aspects of dioxin action. Chem Res Toxicol 6: 754–763

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson GR, Guengerich FP, Branch RA (1992) Genetic polymorphism of S-mephenytoin hydroxylation. In: Kalow W (ed) Pharmacogenetics of drug metabolism, vol 2. Pergamon, New York, 657–685

    Google Scholar 

  • Zanger UM, Vilbois F, Hardwick J, Meyer UA (1988) Absence of hepatic cytochrome P450buf1 causes genetically deficient debrisoquine oxidation in man. Biochemistry 27: 5447–5454

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meyer, U.A. (1994). Cytochrome P450 in Human Drug Metabolism: How Much Is Predictable?. In: Waterman, M.R., Hildebrand, M. (eds) Assessment of the Use of Single Cytochrome P450 Enzymes in Drug Research. Ernst Schering Research Foundation Workshop, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03019-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03019-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03021-9

  • Online ISBN: 978-3-662-03019-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics