Skip to main content

Complex Systems and the Evolution of Mind-Brain

  • Chapter
Thinking in Complexity
  • 95 Accesses

Abstract

How can one explain the emergence of brain and mind? The chapter starts with a short history of the mind-body problem. Besides religious traditions, the concepts of mind and body held by our ancestors were often influenced by the most advanced standards in science and technology (Sect. 4.1). In the framework of complex systems the brain is modeled as a complex cellular system with nonlinear dynamics. The emergence of mental states (for instance pattern recognition, feeling, thoughts) is explained by the evolution of (macroscopic) order parameters of cerebral assemblies which are caused by nonlinear (microscopic) interactions of neural cells in learning strategies far from thermal equilibrium. Pattern recognition, for instance, is interpreted as a kind of phase transition by analogy with the evolution equations which determine pattern emergence in physics, chemistry, and biology (Sect. 4.2). In recent studies in neurobiology and cognitive psychology, scientists even speculate that the emergence of consciousness and self-consciousness depends on the production rate of ‘meta-cell-assemblies’ as neural realizations of self-reflection. The Freudian unconscious is interpreted as a (partial) switching off of order parameters referring to certain states of attention. Even our dreams and emotions seem to be governed by nonlinear dynamics (Sect. 4.3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diels-Kranz: B 36

    Google Scholar 

  2. Cf. Guthrie, W.K.C.: A History of Greek Philosophy vol. I: The Earlier Preso-cratics and the Pythagoreans. Cambridge University Press: Cambridge (1962) 349;

    Google Scholar 

  3. Popper, K.R./Eccles, J.C.: The Self and its Brain. Springer: Berlin (1977) 161

    Book  Google Scholar 

  4. Aristotle: De anima 403 b 31

    Google Scholar 

  5. Plato: Menon

    Google Scholar 

  6. Cf. Galen: Galen on Anatomical Procedures. Translation of the Surviving Books with Introduction and Notes. Oxford University Press: London (1956)

    Google Scholar 

  7. Wickens, G.M: Avicenna. Scientist and Philosopher. A Millenary Symposium: London (1952)

    Google Scholar 

  8. Descartes, R.: Meditations (1641). eds. E. Haldane, G. Ross. Cambridge University Press: Cambridge (1968) 153

    Google Scholar 

  9. Descartes, R.: Treatise on Man (1664). Harvard University Press: Cambridge, Mass. (1972)

    Google Scholar 

  10. Spinoza, B.: Ethica, Reclam: Stuttgart (1984)

    Google Scholar 

  11. Leibniz, G.W.: Monadology; Rescher, N: Leibniz: An Introduction to his Philosophy. Basil Blackwell: Oxford (1979)

    Google Scholar 

  12. Hume, D.: A Treatise of Human Nature (1739). Penguin: Harmondsworth (1969) 82

    Google Scholar 

  13. Mainzer, K.: Kants Begründung der Mathematik und die Entwicklung von Gauß bis Hilbert. In: Akten des V. Intern. Kant-Kongresses in Mainz 1981 (ed. Funke, G.). Bouvier: Bonn (1981) 120–129

    Google Scholar 

  14. Brazier, M.A.B.: A History of Neurophysiology in the 17th and 18th Centuries. Raven: New York (1984);

    Google Scholar 

  15. Cf. Clarke, E./O’Malley, C.D.: The Human Brain and Spinal Cord: A Historical Study illustrated by Writings from Antiquity to the Twentieth Century. University of California Press: Berkeley (1968)

    Google Scholar 

  16. Helmholtz, H.v.: Schriften zur Erkenntnistheorie (eds. Hertz, R/Schlick, M.). Berlin (1921); Mainzer, K.: Geschichte der Geometrie (see Note 13 Chapter 2) 172

    Google Scholar 

  17. Müller, J.: Handbuch der Physiologie des Menschen. Koblenz (1835)

    Google Scholar 

  18. Helmholtz, H.v.: Vorläufiger Bericht über die Fortpflanzungsgeschwindigkeit der Nervenreizung. Archiv für Anatomie, Physiologie und wissenschaftliche Medizin (1850)71–73

    Google Scholar 

  19. James, W.: Psychology (Briefer Course). Holt: New York (1890) 3

    Google Scholar 

  20. James, W.: Psychology (see Note 17) 254

    Google Scholar 

  21. James, W.: Psychology (see Note 17) Fig. 57

    Google Scholar 

  22. Cf. Baron, R.J.: The Cerebral Computer. An Introduction to the Computational Structure of the Human Brain. Lawrence Erlbaum: Hillsdale N.J. (1987);

    Google Scholar 

  23. Braitenberg, V.: Gehirngespinste. Neuroanatomie für kybernetisch Interessierte. Springer: Berlin (1973)

    Book  Google Scholar 

  24. Churchland, P.S./Sejnowski, T.J.: Perspectives in cognitive neuroscience. Science 242 (1988) 741–745.

    Article  ADS  Google Scholar 

  25. The subset of visual cortex is adapted from van Essen, D./Maunsell, J.H.R.: Two-dimensional maps of the cerebral cortex. Journal of Comparative Neurology 191 (1980) 255–281.

    Article  Google Scholar 

  26. The network model of ganglion cells is given in Hubel, D.H./Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160 (1962) 106–154.

    Google Scholar 

  27. An example of chemical synapses is shown in Kand, E.R./Schwartz J.: Principles of Neural Science. Elsevier: New York (1985)

    Google Scholar 

  28. Cf. Churchland, P.M.: A Neurocomputational Perspective: The Nature of Mind and the Structure of Science. MIT Press: Cambridge, Mass./ London (1989) 99

    Google Scholar 

  29. Pellionisz, A.J.: Vistas from Tensor Network Theory: A Horizon from Reduction-alist Neurophilosophy to the Geometry of Multi-Unit Recordings. In: Cotterill, R.M.J. (ed.): Computer Simulation in Brain Science. Cambridge University Press: Cambridge/New York/Sydney (1988) 44–73; Churchland, P.M.: A Neurocomputational Perspective (see Note 22) 83, 89

    Chapter  Google Scholar 

  30. Cf. Schwartz, E.L. (ed.): Computational Neuroscience. MIT Press: Cambridge, Mass. (1990)

    Google Scholar 

  31. Cf. Churchland, P.S./Sejnowski, T.J.: The Computational Brain. MIT Press: Cambridge, Mass. (1992) 169

    Google Scholar 

  32. Hebb, D.O.: The Organization of Behavior. Wiley: New York (1949) 50

    Google Scholar 

  33. Kohonen, T.: Self-Organization and Associative Memory. Springer: Berlin (1989) 105; Churchland, P.S./Sejnowski, T.J.: The Computational Brain (see Note 25) 54;

    Book  Google Scholar 

  34. Ritter, H./Martinetz, T./Schulten, K.: Neuronale Netze. Eine Einführung in die Neuroinformatik selbstorganisierender Netzwerke. Addison-Wesley: Reading, Mass. (1991) 35

    Google Scholar 

  35. Hopfield, J.J.: Neural Network and physical Systems with emergent collective computational Abilities. Proceedings of the National Academy of Sciences 79 (1982)2554–2558

    Article  MathSciNet  ADS  Google Scholar 

  36. Hertz, J./Krogh, A./Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley: Redwood City (1991)

    Google Scholar 

  37. Serra, R./Zanarini, G.: Complex Systems and Cognitive Processes. Springer: Berlin (1990) 78

    Book  Google Scholar 

  38. Hertz, J./Krogh, A./Palmer, R.G.: Introduction to the Theory of Neural Computation (see Note 29); Hopfield, J.J./Tank, D.W.: Computing with Neural Circuits: A Model. Science 233 (1986) 625–633

    Article  ADS  Google Scholar 

  39. Ackley, D.H./Hinton, G.E./Sejnowski, T.J.: A learning Algorithm for Boltzmann Machines. Cognitive Science 9 (1985) 147–169

    Article  Google Scholar 

  40. A mathematical elaboration of the learning algorithm for a Boltzmann machine is given in Serra, R./Zanarini, G.: Complex Systems and Cognitive Processes (see Note 30) 137. An illustration is shown in Churchland, P.S./Sejnowski, T.J.: The Computational Brain (see Note 25) 101

    Google Scholar 

  41. Rumelhart, D.E./Zipser, D.: Feature Discovery by Competitive Learning. In: McClelland, J.L./Rumelhart, D.E. (eds.): Parallel Distributed Processing. MIT Press: Cambridge, Mass. (1986)

    Google Scholar 

  42. Kohonen, T.: Self-Organization and Associative Memory (see Note 27) 123

    Google Scholar 

  43. Kohonen, T.: Self-Organization and Associative Memory (see Note 27) 125

    Google Scholar 

  44. Ritter, H./Martinetz, T./Schulten, K.: Neuronale Netze (see Note 27) 75

    Google Scholar 

  45. Suga, N./O’Neill, W.E.: Neural axis representing target range in the auditory cortex of the mustache Bat. Science 206 (1979) 351–353; Ritter, H./Martinetz, T./Schulten, K.: Neuronale Netze (see Note 27) 88

    Article  ADS  Google Scholar 

  46. Widrow, B./Hoff, M.E.: Adaptive Switching Circuits. 1960 IRE WESCON Convention Record. IRE: New York (1960) 36–104

    Google Scholar 

  47. Cf. Churchland, P.S./Sejnowski, T.J.: The Computational Brain (see Note 25) 106

    Google Scholar 

  48. Rumelhart, D.E./Hinton, G.E./Williams, R.J.: Learning representations by back-propagating errors. Nature 323 (1986) 533–536;

    Article  ADS  Google Scholar 

  49. Arbib, M.A.: Brains, Machines, and Mathematics. Springer: New York (1987) 117

    Book  MATH  Google Scholar 

  50. Khöler, W.: Die physischen Gestalten in Ruhe und im stationären Zustand. Vieweg: Braunschweig (1920);

    Book  Google Scholar 

  51. Khöler, W.: Jahresberichte für die ges. Physiol, und exp. Pharmakol. 3 (1925) 512–539;

    Google Scholar 

  52. Stadler, M./Kruse, P.: The Self-Organization Perspective in Cognitive Research: Historical Remarks and New Experimental Approaches. In: Haken, H./Stadler, M. (eds.): Synergetics of Cognition. Springer: Berlin (1990) 33

    Google Scholar 

  53. ; Cf. Churchland, P.M.: A Neurocomputational Perspective (see Note 22) 209

    Google Scholar 

  54. Cf. Churchland, P.M.: A Neurocomputational Perspective (see Note 22) 209

    Google Scholar 

  55. Cf. Churchland, P.M.: A Neurocomputational Perspective (see Note 22) 211

    Google Scholar 

  56. Cf. Feigl, H./Scriven, M./Maxwell, G. (eds.): Concepts, Theories and the Mind-Body Problem. University of Minnesota Press: Minneapolis (1958);

    Google Scholar 

  57. Marcel, A.J./Bisiach, E. (eds.): Consciousness in Contemporary Science. Clarendon Press: Oxford (1988);

    Google Scholar 

  58. Bieri, P.: Pain: A case study for the mind-body problem. Acta Neu-rochirurgica 38 (1987) 157–164;

    Google Scholar 

  59. Lycan, W.G.: Consciousness. MIT Press: Cambridge, Mass. (1987)

    Google Scholar 

  60. Flohr, H.: Brain processes and phenomenal consciousness. A new and specific hypothesis. Theory & Psychology 1(2) (1991) 248

    Article  Google Scholar 

  61. von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14 (1973) 85–100;

    Article  Google Scholar 

  62. Wilshaw, D.J./von der Malsburg, C.: How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society Series B 194 (1976) 431–445

    Article  ADS  Google Scholar 

  63. Cf. Pöppel, E. (ed.): Gehirn und Bewußtsein. VCH Verlagsgesellschaft: Weinheim (1989);

    Google Scholar 

  64. Singer, W. (ed.): Gehirn und Kognition. Spektrum der Wissenschaft: Heidelberg (1990)

    Google Scholar 

  65. Haken, H./Stadler, M. (eds.): Synergetics of Cognition (see Note 42) 206

    Google Scholar 

  66. Haken, H./Stadler, M. (eds.): Synergetics of Cognition (see Note 42) 204

    Google Scholar 

  67. Pöppel, E.: Die neurophysiologische Definition des Zustands “bewußt”. In: Pöppel, E. (ed.): Gehirn und Bewußtsein (see Note 48) 18

    Google Scholar 

  68. Searle, J.R.: Intentionality. An Essay in the Philosophy of Mind. Cambridge University Press: Cambridge (1983);

    Book  Google Scholar 

  69. Dennett, D.: The Intentional Stance, MIT Press: Cambridge, Mass. (1987)

    Google Scholar 

  70. Shaw, R.E./Kinsella-Shaw, J.M.: Ecological Mechanics: A Physical Geometry for Intentional Constraints. Hum. Mov. Sci. 7 (1988) 155

    Article  Google Scholar 

  71. For Figs. 4.22a-d, 4.23 Kugler, P.N./Shaw, R.E.: Symmetry and Symmetry Breaking in Thermodynamic and Epistemic Engines: A Coupling of First and Second Laws. In: Haken, H./Stadler, M. (eds.): Synergetics of Cognition (see Note 42) 317,318,319,328

    Google Scholar 

  72. Kelso, J.A.S./Mandell, A.J./Shlesinger, M.F. (eds.): Dynamic Patterns in Complex Systems. World Scientific: Singapore (1988);

    MATH  Google Scholar 

  73. For Figs. 4.24a-b, 4.25 compare Haken, H./Haken-Krell, M.: Erfolgsgeheimnisse der Wahrnehmung. Deutsche Verlags-Anstalt: Stuttgart (1992) 36, 38

    Google Scholar 

  74. Kelso, J.A.S.: Phase Transitions: Foundations of Behavior. In: Haken, H./Stadler, M. (eds.): Synergetics of Cognition (see Note 42) 260

    Google Scholar 

  75. Searle, J.R.: Mind, brains and programs. Behavioral and Brain Science 3 (1980) 417–424;

    Article  Google Scholar 

  76. Searle, J.R.: Intrinsic intentionality. Behavioral and Brain Science 3 (1980) 450–456;

    Article  Google Scholar 

  77. Searle, J.R.: Analytic philosophy and mental phenomena. Midwest Studies in Philosophy 5 (1980) 405–423.

    Google Scholar 

  78. For a Critique of Searle’s position compare Putnam, H.: Representation and Reality. MIT Press: Cambridge, Mass. (1988) 26

    Google Scholar 

  79. Eccles, J.C.: The Neurophysiological Basis of Mind. Clarendon Press: Oxford 1953;

    Google Scholar 

  80. Eccles, J.C.: Facing Reality. Springer: New York (1970);

    Google Scholar 

  81. Eccles, J.C. (ed.): Mind and Brain, Paragon: Washington, D.C. (1982)

    Google Scholar 

  82. Palm, G.; Assoziatives Gedächtnis und Gehirn. In: Singer, W. (ed.): Gehirn und Kognition (see Note 48) 172; Palm, G. (ed.): Neural Assemblies: An Alternative Approach to Artificial Intelligence. Springer: Berlin (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mainzer, K. (1994). Complex Systems and the Evolution of Mind-Brain. In: Thinking in Complexity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-03014-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-03014-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-03016-5

  • Online ISBN: 978-3-662-03014-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics