Complex Systems and the Evolution of Mind-Brain

  • Klaus Mainzer


How can one explain the emergence of brain and mind? The chapter starts with a short history of the mind-body problem. Besides religious traditions, the concepts of mind and body held by our ancestors were often influenced by the most advanced standards in science and technology (Sect. 4.1). In the framework of complex systems the brain is modeled as a complex cellular system with nonlinear dynamics. The emergence of mental states (for instance pattern recognition, feeling, thoughts) is explained by the evolution of (macroscopic) order parameters of cerebral assemblies which are caused by nonlinear (microscopic) interactions of neural cells in learning strategies far from thermal equilibrium. Pattern recognition, for instance, is interpreted as a kind of phase transition by analogy with the evolution equations which determine pattern emergence in physics, chemistry, and biology (Sect. 4.2). In recent studies in neurobiology and cognitive psychology, scientists even speculate that the emergence of consciousness and self-consciousness depends on the production rate of ‘meta-cell-assemblies’ as neural realizations of self-reflection. The Freudian unconscious is interpreted as a (partial) switching off of order parameters referring to certain states of attention. Even our dreams and emotions seem to be governed by nonlinear dynamics (Sect. 4.3).


Auditory Cortex Spin Glass Energy Landscape Hide Unit Intentional Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    Diels-Kranz: B 36Google Scholar
  2. 4.2
    Cf. Guthrie, W.K.C.: A History of Greek Philosophy vol. I: The Earlier Preso-cratics and the Pythagoreans. Cambridge University Press: Cambridge (1962) 349;Google Scholar
  3. 4.2a
    Popper, K.R./Eccles, J.C.: The Self and its Brain. Springer: Berlin (1977) 161CrossRefGoogle Scholar
  4. 4.3
    Aristotle: De anima 403 b 31Google Scholar
  5. 4.4
    Plato: MenonGoogle Scholar
  6. 4.5
    Cf. Galen: Galen on Anatomical Procedures. Translation of the Surviving Books with Introduction and Notes. Oxford University Press: London (1956)Google Scholar
  7. 4.6
    Wickens, G.M: Avicenna. Scientist and Philosopher. A Millenary Symposium: London (1952)Google Scholar
  8. 4.7
    Descartes, R.: Meditations (1641). eds. E. Haldane, G. Ross. Cambridge University Press: Cambridge (1968) 153Google Scholar
  9. 4.8
    Descartes, R.: Treatise on Man (1664). Harvard University Press: Cambridge, Mass. (1972)Google Scholar
  10. 4.9
    Spinoza, B.: Ethica, Reclam: Stuttgart (1984)Google Scholar
  11. 4.10
    Leibniz, G.W.: Monadology; Rescher, N: Leibniz: An Introduction to his Philosophy. Basil Blackwell: Oxford (1979)Google Scholar
  12. 4.11
    Hume, D.: A Treatise of Human Nature (1739). Penguin: Harmondsworth (1969) 82Google Scholar
  13. 4.12
    Mainzer, K.: Kants Begründung der Mathematik und die Entwicklung von Gauß bis Hilbert. In: Akten des V. Intern. Kant-Kongresses in Mainz 1981 (ed. Funke, G.). Bouvier: Bonn (1981) 120–129Google Scholar
  14. 4.13
    Brazier, M.A.B.: A History of Neurophysiology in the 17th and 18th Centuries. Raven: New York (1984);Google Scholar
  15. 4.13a
    Cf. Clarke, E./O’Malley, C.D.: The Human Brain and Spinal Cord: A Historical Study illustrated by Writings from Antiquity to the Twentieth Century. University of California Press: Berkeley (1968)Google Scholar
  16. 4.14
    Helmholtz, H.v.: Schriften zur Erkenntnistheorie (eds. Hertz, R/Schlick, M.). Berlin (1921); Mainzer, K.: Geschichte der Geometrie (see Note 13 Chapter 2) 172Google Scholar
  17. 4.15
    Müller, J.: Handbuch der Physiologie des Menschen. Koblenz (1835)Google Scholar
  18. 4.16
    Helmholtz, H.v.: Vorläufiger Bericht über die Fortpflanzungsgeschwindigkeit der Nervenreizung. Archiv für Anatomie, Physiologie und wissenschaftliche Medizin (1850)71–73Google Scholar
  19. 4.17
    James, W.: Psychology (Briefer Course). Holt: New York (1890) 3Google Scholar
  20. 4.18
    James, W.: Psychology (see Note 17) 254Google Scholar
  21. 4.19
    James, W.: Psychology (see Note 17) Fig. 57Google Scholar
  22. 4.20
    Cf. Baron, R.J.: The Cerebral Computer. An Introduction to the Computational Structure of the Human Brain. Lawrence Erlbaum: Hillsdale N.J. (1987);Google Scholar
  23. 4.20
    Braitenberg, V.: Gehirngespinste. Neuroanatomie für kybernetisch Interessierte. Springer: Berlin (1973)CrossRefGoogle Scholar
  24. 4.21
    Churchland, P.S./Sejnowski, T.J.: Perspectives in cognitive neuroscience. Science 242 (1988) 741–745.ADSCrossRefGoogle Scholar
  25. 4.21
    The subset of visual cortex is adapted from van Essen, D./Maunsell, J.H.R.: Two-dimensional maps of the cerebral cortex. Journal of Comparative Neurology 191 (1980) 255–281.CrossRefGoogle Scholar
  26. 4.21a
    The network model of ganglion cells is given in Hubel, D.H./Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160 (1962) 106–154.Google Scholar
  27. 4.21b
    An example of chemical synapses is shown in Kand, E.R./Schwartz J.: Principles of Neural Science. Elsevier: New York (1985)Google Scholar
  28. 4.22
    Cf. Churchland, P.M.: A Neurocomputational Perspective: The Nature of Mind and the Structure of Science. MIT Press: Cambridge, Mass./ London (1989) 99Google Scholar
  29. 4.23
    Pellionisz, A.J.: Vistas from Tensor Network Theory: A Horizon from Reduction-alist Neurophilosophy to the Geometry of Multi-Unit Recordings. In: Cotterill, R.M.J. (ed.): Computer Simulation in Brain Science. Cambridge University Press: Cambridge/New York/Sydney (1988) 44–73; Churchland, P.M.: A Neurocomputational Perspective (see Note 22) 83, 89CrossRefGoogle Scholar
  30. 4.24
    Cf. Schwartz, E.L. (ed.): Computational Neuroscience. MIT Press: Cambridge, Mass. (1990)Google Scholar
  31. 4.25
    Cf. Churchland, P.S./Sejnowski, T.J.: The Computational Brain. MIT Press: Cambridge, Mass. (1992) 169Google Scholar
  32. 4.26
    Hebb, D.O.: The Organization of Behavior. Wiley: New York (1949) 50Google Scholar
  33. 4.27
    Kohonen, T.: Self-Organization and Associative Memory. Springer: Berlin (1989) 105; Churchland, P.S./Sejnowski, T.J.: The Computational Brain (see Note 25) 54;CrossRefGoogle Scholar
  34. 4.27a
    Ritter, H./Martinetz, T./Schulten, K.: Neuronale Netze. Eine Einführung in die Neuroinformatik selbstorganisierender Netzwerke. Addison-Wesley: Reading, Mass. (1991) 35Google Scholar
  35. 4.28
    Hopfield, J.J.: Neural Network and physical Systems with emergent collective computational Abilities. Proceedings of the National Academy of Sciences 79 (1982)2554–2558MathSciNetADSCrossRefGoogle Scholar
  36. 4.29
    Hertz, J./Krogh, A./Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison-Wesley: Redwood City (1991)Google Scholar
  37. 4.30
    Serra, R./Zanarini, G.: Complex Systems and Cognitive Processes. Springer: Berlin (1990) 78CrossRefGoogle Scholar
  38. 4.31
    Hertz, J./Krogh, A./Palmer, R.G.: Introduction to the Theory of Neural Computation (see Note 29); Hopfield, J.J./Tank, D.W.: Computing with Neural Circuits: A Model. Science 233 (1986) 625–633ADSCrossRefGoogle Scholar
  39. 4.32
    Ackley, D.H./Hinton, G.E./Sejnowski, T.J.: A learning Algorithm for Boltzmann Machines. Cognitive Science 9 (1985) 147–169CrossRefGoogle Scholar
  40. 4.33
    A mathematical elaboration of the learning algorithm for a Boltzmann machine is given in Serra, R./Zanarini, G.: Complex Systems and Cognitive Processes (see Note 30) 137. An illustration is shown in Churchland, P.S./Sejnowski, T.J.: The Computational Brain (see Note 25) 101Google Scholar
  41. 4.34
    Rumelhart, D.E./Zipser, D.: Feature Discovery by Competitive Learning. In: McClelland, J.L./Rumelhart, D.E. (eds.): Parallel Distributed Processing. MIT Press: Cambridge, Mass. (1986)Google Scholar
  42. 4.35
    Kohonen, T.: Self-Organization and Associative Memory (see Note 27) 123Google Scholar
  43. 4.36
    Kohonen, T.: Self-Organization and Associative Memory (see Note 27) 125Google Scholar
  44. 4.37
    Ritter, H./Martinetz, T./Schulten, K.: Neuronale Netze (see Note 27) 75Google Scholar
  45. 4.38
    Suga, N./O’Neill, W.E.: Neural axis representing target range in the auditory cortex of the mustache Bat. Science 206 (1979) 351–353; Ritter, H./Martinetz, T./Schulten, K.: Neuronale Netze (see Note 27) 88ADSCrossRefGoogle Scholar
  46. 4.39
    Widrow, B./Hoff, M.E.: Adaptive Switching Circuits. 1960 IRE WESCON Convention Record. IRE: New York (1960) 36–104Google Scholar
  47. 4.40
    Cf. Churchland, P.S./Sejnowski, T.J.: The Computational Brain (see Note 25) 106Google Scholar
  48. 4.41
    Rumelhart, D.E./Hinton, G.E./Williams, R.J.: Learning representations by back-propagating errors. Nature 323 (1986) 533–536;ADSCrossRefGoogle Scholar
  49. 4.41a
    Arbib, M.A.: Brains, Machines, and Mathematics. Springer: New York (1987) 117MATHCrossRefGoogle Scholar
  50. 4.42
    Khöler, W.: Die physischen Gestalten in Ruhe und im stationären Zustand. Vieweg: Braunschweig (1920);CrossRefGoogle Scholar
  51. 4.42a
    Khöler, W.: Jahresberichte für die ges. Physiol, und exp. Pharmakol. 3 (1925) 512–539;Google Scholar
  52. 4.42b
    Stadler, M./Kruse, P.: The Self-Organization Perspective in Cognitive Research: Historical Remarks and New Experimental Approaches. In: Haken, H./Stadler, M. (eds.): Synergetics of Cognition. Springer: Berlin (1990) 33Google Scholar
  53. 4.43
    ; Cf. Churchland, P.M.: A Neurocomputational Perspective (see Note 22) 209Google Scholar
  54. 4.43
    Cf. Churchland, P.M.: A Neurocomputational Perspective (see Note 22) 209Google Scholar
  55. 4.44
    Cf. Churchland, P.M.: A Neurocomputational Perspective (see Note 22) 211Google Scholar
  56. 4.45
    Cf. Feigl, H./Scriven, M./Maxwell, G. (eds.): Concepts, Theories and the Mind-Body Problem. University of Minnesota Press: Minneapolis (1958);Google Scholar
  57. 4.45a
    Marcel, A.J./Bisiach, E. (eds.): Consciousness in Contemporary Science. Clarendon Press: Oxford (1988);Google Scholar
  58. 4.45b
    Bieri, P.: Pain: A case study for the mind-body problem. Acta Neu-rochirurgica 38 (1987) 157–164;Google Scholar
  59. 4.45c
    Lycan, W.G.: Consciousness. MIT Press: Cambridge, Mass. (1987)Google Scholar
  60. 4.46
    Flohr, H.: Brain processes and phenomenal consciousness. A new and specific hypothesis. Theory & Psychology 1(2) (1991) 248CrossRefGoogle Scholar
  61. 4.47
    von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14 (1973) 85–100;CrossRefGoogle Scholar
  62. 4.47a
    Wilshaw, D.J./von der Malsburg, C.: How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society Series B 194 (1976) 431–445ADSCrossRefGoogle Scholar
  63. 4.48
    Cf. Pöppel, E. (ed.): Gehirn und Bewußtsein. VCH Verlagsgesellschaft: Weinheim (1989);Google Scholar
  64. 4.48a
    Singer, W. (ed.): Gehirn und Kognition. Spektrum der Wissenschaft: Heidelberg (1990)Google Scholar
  65. 4.49
    Haken, H./Stadler, M. (eds.): Synergetics of Cognition (see Note 42) 206Google Scholar
  66. 4.50
    Haken, H./Stadler, M. (eds.): Synergetics of Cognition (see Note 42) 204Google Scholar
  67. 4.51
    Pöppel, E.: Die neurophysiologische Definition des Zustands “bewußt”. In: Pöppel, E. (ed.): Gehirn und Bewußtsein (see Note 48) 18Google Scholar
  68. 4.52
    Searle, J.R.: Intentionality. An Essay in the Philosophy of Mind. Cambridge University Press: Cambridge (1983);CrossRefGoogle Scholar
  69. 4.52a
    Dennett, D.: The Intentional Stance, MIT Press: Cambridge, Mass. (1987)Google Scholar
  70. 4.53
    Shaw, R.E./Kinsella-Shaw, J.M.: Ecological Mechanics: A Physical Geometry for Intentional Constraints. Hum. Mov. Sci. 7 (1988) 155CrossRefGoogle Scholar
  71. 4.54
    For Figs. 4.22a-d, 4.23 Kugler, P.N./Shaw, R.E.: Symmetry and Symmetry Breaking in Thermodynamic and Epistemic Engines: A Coupling of First and Second Laws. In: Haken, H./Stadler, M. (eds.): Synergetics of Cognition (see Note 42) 317,318,319,328Google Scholar
  72. 4.55
    Kelso, J.A.S./Mandell, A.J./Shlesinger, M.F. (eds.): Dynamic Patterns in Complex Systems. World Scientific: Singapore (1988);MATHGoogle Scholar
  73. 4.55a
    For Figs. 4.24a-b, 4.25 compare Haken, H./Haken-Krell, M.: Erfolgsgeheimnisse der Wahrnehmung. Deutsche Verlags-Anstalt: Stuttgart (1992) 36, 38Google Scholar
  74. 4.56
    Kelso, J.A.S.: Phase Transitions: Foundations of Behavior. In: Haken, H./Stadler, M. (eds.): Synergetics of Cognition (see Note 42) 260Google Scholar
  75. 4.57
    Searle, J.R.: Mind, brains and programs. Behavioral and Brain Science 3 (1980) 417–424;CrossRefGoogle Scholar
  76. 4.57a
    Searle, J.R.: Intrinsic intentionality. Behavioral and Brain Science 3 (1980) 450–456;CrossRefGoogle Scholar
  77. 4.57b
    Searle, J.R.: Analytic philosophy and mental phenomena. Midwest Studies in Philosophy 5 (1980) 405–423.Google Scholar
  78. 4.57c
    For a Critique of Searle’s position compare Putnam, H.: Representation and Reality. MIT Press: Cambridge, Mass. (1988) 26Google Scholar
  79. 4.58
    Eccles, J.C.: The Neurophysiological Basis of Mind. Clarendon Press: Oxford 1953;Google Scholar
  80. 4.58a
    Eccles, J.C.: Facing Reality. Springer: New York (1970);Google Scholar
  81. 4.58b
    Eccles, J.C. (ed.): Mind and Brain, Paragon: Washington, D.C. (1982)Google Scholar
  82. 4.59
    Palm, G.; Assoziatives Gedächtnis und Gehirn. In: Singer, W. (ed.): Gehirn und Kognition (see Note 48) 172; Palm, G. (ed.): Neural Assemblies: An Alternative Approach to Artificial Intelligence. Springer: Berlin (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Klaus Mainzer
    • 1
  1. 1.Lehrstuhl für Philosophie und WissenschaftstheorieUniversität AugsburgAugsburgDeutschland

Personalised recommendations