Introduction: From Linear to Nonlinear Thinking

  • Klaus Mainzer

Abstract

The theory of nonlinear complex systems has become a successful problem solving approach in the natural sciences — from laser physics, quantum chaos, and metereology to molecular modeling in chemistry and computer-assisted simulations of cellular growth in biology. On the other hand, the social sciences are recognizing that the main problems of mankind are global, complex, and nonlinear, too. Local changes in the ecological, economic, or political system can cause a global crisis. Linear thinking and the belief that the whole is only the sum of its parts are evidently obsolete. One of the most exciting topics of present scientific and public interest is the idea that even our mind is governed by the nonlinear dynamics of complex systems. If this thesis of computational neuroscience is correct, then indeed we have a powerful mathematical strategy to handle interdisciplinary problems of natural sciences, social sciences, and humanities.

Keywords

Entropy Vortex Migration Ozone Hexagonal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.1
    Mainzer, K., Schirmacher, W. (eds.): Quanten, Chaos und Dämonen. Erkenntnistheoretische Aspekte des physikalischen Weltbildes, B. I. Wissenschaftsverlag: Mannheim 1994Google Scholar
  2. 1.2
    Stein, D.L. (ed.): Lectures in the Sciences of Complexity, Santa Fe Institute Studies in the Sciences of Complexity vol. 1, Addison-Wesley: Redwood City, CA, 1989;Google Scholar
  3. 1.2a
    Jen, E. (ed.): Lectures in Complex Systems, Santa Fe Institute Studies in the Sciences of Complexity vol. 2, 1990;Google Scholar
  4. 1.2b
    Stein, D.L. (ed.): Lectures in Complex Systems, Santa Fe Institute Studies in the Sciences of Complexity vol. 3, 1991Google Scholar
  5. 1.3
    Nicolis, G., Prigogine, I.: Exploring Complexity. An Introduction, W.H. Freeman: New York 1989Google Scholar
  6. 1.4
    Haken, H.: Synergetics. An Introduction, 3rd Edn. Springer: Berlin 1983MATHCrossRefGoogle Scholar
  7. 1.5
    Mainzer, K.: Symmetries in Nature, De Gruyter: New York 1994 (German original: Symmetrien der Natur 1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Klaus Mainzer
    • 1
  1. 1.Lehrstuhl für Philosophie und WissenschaftstheorieUniversität AugsburgAugsburgDeutschland

Personalised recommendations