Advertisement

Metamorphism of Ultramafic Rocks

  • Kurt Bucher
  • Martin Frey

Abstract

The Earth’s mantle consists predominantly of ultramafic rocks. The mantle is, with the exception of some small anomalous regions, in the solid state. The ultramafics undergo continuous recrystallization due to large-scale convection in sub-lithosphere mantle and tectonic processes in the lithosphere and any other processes causing pressure and temperature variations in a given volume of mantle rocks (magmatism, cooling and hydration). The majority of mantle rocks, therefore, qualify as metamorphic rocks. Metamorphic ultramafic rocks build up the largest volume of rocks on a global scale.

Keywords

Ultramafic Rock Invariant Point Mantle Rock Contact Aureole Scandinavian Caledonides 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman RG, Engi M, Greenwood HJ, Brown TH (1986) Derivation of internally-consistent thermodynamic data by the technique of mathematical programming: a review with application to the system Mgo- Si02-H20. J Petrol 27:1331–1364CrossRefGoogle Scholar
  2. Brey G, Brice WR, Ellis DJ, Green DH, Hars KL, Ryabchikov ID (1983) Pyroxenecarbonate reactions in the upper mantle. Earth and Planet Sci Lett 62: 63–74CrossRefGoogle Scholar
  3. Bucher-Nurminen K (1991) Mantle fragments in the Scandinavian Caledonides. Tectonophysics 190:173–192CrossRefGoogle Scholar
  4. Carswell DA (1981) Clarification of the petrology and occurrence of garnet lherzolites and eclogite in the vicinity of Rodhaugen, Almklovdalen, West Norway. Nor Geol Tidsskr 61:249–260Google Scholar
  5. Carswell DA (1985) The metamorpic evolution of Norwegian garnet peridotites. Terra Cognita 5:439Google Scholar
  6. Carswell DA, Gibb FGF (1980) The equilibrium conditions and petrogenesis of European crustal garnet lherzolites. Lithos 13: 19–29CrossRefGoogle Scholar
  7. Chidester AH, Cady WM (1972) Origin and emplacement of alpine-type ultramafic rocks. Nat Phys Sci 240:27–31Google Scholar
  8. Dawson JB (1981) The nature of the upper mantle. Mineral Mag 44: 1–18CrossRefGoogle Scholar
  9. Dymek RF, Boak JL, Brothers SC (1988) Titanic chondrodite- and titanian clinohumitebearing metadunite from the 3800 Ma Isua supracrustal belt, West Greenland. Chemistry, petrology, and origin. Am Mineral 73,5–6: 547–558Google Scholar
  10. Eckstrand OR (1975) The Dumont Serpentinite: a model for control of nickeliferous opaque mineral assemblages by alteration reactions in ultramafic rocks. Econ Geol 70 :183–201Google Scholar
  11. Evans BW (1977) Metamorphism of Alpine peridotite and serpentine. Ann Rev Earth Planet Sci 5:397–447CrossRefGoogle Scholar
  12. Evans BW, Trommsdorff V (1970) Regional metamorphism of ultramafic rocks in the central Alps: parageneses in the system Cao- Mgo- Si02- H2o. Schweiz Mineral Petrogr Mitt 50:481–492Google Scholar
  13. Evans BW, Trommsdorff V (1974) Stability of enstatite + talc, and CO2-metasomatism of metaperidotite, Val d’Efra, Lepontine Alps. Am J Sci 274:274–296Google Scholar
  14. Evans BW, Trommsdorff V (1978) Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth Planet Sci Lett 40: 333–348Google Scholar
  15. Evans BW, Johannes W, Oterdoom H, Trommsdorff V (1976) Stability of chrysolite and antigorite in the serpentinite multisystem. Schweiz Mineral Petrogr Mitt 56:79–93Google Scholar
  16. Frost BR (1975) Contact metamorphism of serpentinite chlorite blackwall and rodingite at Paddy-Go-Easy pass, central Cascades, Washington. J Petrol 16:272–313Google Scholar
  17. Frost BR (1985) On the stability of sulfides, oxides and nativ metals in serpentinite. J Petrol 26:31–63CrossRefGoogle Scholar
  18. Lieberman JE, Rice JM (1986) Petrology of marble and peridotite in the Seiad ultramafic complex, northern California, USA. J Metamorph Geol 4:179–199Google Scholar
  19. Naldrett AJ, Cabri LJ (1976) Ultramafic and related mafic rocks: their classification and genesis with special references to the concentrations of nickel sulfides and platinium-group elements. Econ Geol 71 : 1131–1158Google Scholar
  20. Nishiyama T (1990) CO2-metasomatism of a metabasite block in a serpentine melange from the Nishisonogi metamorphic rocks, southwest Japan. Contrib Mineral Petrol 104:35–46CrossRefGoogle Scholar
  21. O’Hanley DS, Dyar MD (1993) The composition of lizardite 1T and the formation of magnetite in serpentinites. Am Mineral 78 : 391–404Google Scholar
  22. Schreyer W, Ohnmacht W, Mannchen J (1972) Carbonate-orthopyroxenites (sagvandites) from Troms, northern Norway. Lithos 5:345–363CrossRefGoogle Scholar
  23. Soto JI (1993) PTMAFIC: software for thermobarometry and activity calculations with mafic and ultramafic assemblages. Am Mineral 78 : 840–844Google Scholar
  24. Trommsdorff V (1983) Metamorphose magnesiumreicher Gesteine: Kritischer Vergleich von Natur, Experiment und thermodynamischer Datenbasis. Fortschr Mineral 61: 283–308Google Scholar
  25. Trommsdorff V, Connolly JAD (1990) Constraints on phase diagram topology for the system Cao- Mgo- Si02- CO2- H20. Contrib Mineral Petrol 104:1–7CrossRefGoogle Scholar
  26. Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy). Am J Sci 272:487–509Google Scholar
  27. Trommsdorff V. Evans BW (1977) Antigorite-ophicarbonates: contact metamorphism in Valmalenco, Italy. Contrib Mineral Petrol 62:301–312Google Scholar
  28. Warner M, McGeary S (1987) Seismic reflection coefficients from mantle fault zones. Geophys J R Astronom Soc 89:223–230.CrossRefGoogle Scholar
  29. Wyllie PJ, Huang W.-L., Otto J, Byrnes AP (1983) Carbonation of peridotites and decarbonation of siliceous dolomites represented in the system Cao- Mgo- Si02- CO2 to 30 kbar. Tectonophysics 100:359–388CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Kurt Bucher
    • 1
  • Martin Frey
    • 2
  1. 1.Mineralogisch-Petrographisches InstitutFreiburg im BreisgauGermany
  2. 2.Mineralogisch-Petrographisches InstitutBaselSwitzerland

Personalised recommendations