Culturing of Plant Cells

  • Rudolf Endress


Once protoplasts are separated from the isolation medium and transferred to a suitable growth medium, adaptation and regeneration processes begin. Adaptation is necessary because the growth conditions differ from those in the tissue’s previous environment. This can be synthetic or natural. It is characteristic of the differing adaptation that microfibrils are deposited and first cell divisions occur much sooner in protoplasts from actively growing cell suspension cultures than in those from fully differentiated tissue (Table 34; Galun 1981).


Suspension Culture Cell Suspension Culture Nicotiana Tabacum Plant Cell Culture Protoplast Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

  1. Alfermann AW, Merz D, Reinhard E (1975) Induktion der Anthocyansynthese in Kallus Kulturen von Daucus carota. In: Schratz E (ed) Zellkulturen: Ihre Bedeutung für die Arznei pflanzenforschung. Planta Med Suppl 1975. Thieme, Stuttgart, p 73Google Scholar
  2. Ashihara H, Ukaji T (1986) Inorganic phosphate absorption and its effect on the adenosine 5’-triphosphate level in suspension cultured cells of Cathararanthus roseus. J Plant Physiol 124: 77CrossRefGoogle Scholar
  3. Ashihara H, Li XN, Ukaji T (1988) Effect of inorganic phosphate on the biosynthesis of purine and pyrimidine nucleotides in suspension cultured cells of Catharanthus roseus. Ann Bot 62: 225Google Scholar
  4. Behrend J, Mateles RJ (1978) Nitrogen metabolism in plant cell suspension cultures. I. Effect of amino acids on growth. Plant Physiol 56: 584Google Scholar
  5. Bellincampi D, Morpurgo G (1987) Conditioning factor affecting growth in plant cells in culture. Plant Sci 51 (1): 584CrossRefGoogle Scholar
  6. Bergmann L. (1959) A new technique for isolating and cloning cells of higher plants. Nature 184: 648CrossRefGoogle Scholar
  7. Bergmann L (1960) Growth and division of single cells of higher plants in vitro. J Gen Physiol 43: 841PubMedCrossRefGoogle Scholar
  8. Bergmann L (1967) Wachstum grüner Suspensionskulturen von Nicotiana tabacum var. `Samsun’ mit CO2 als Kohlenstoffquelle. Planta 74: 243CrossRefGoogle Scholar
  9. Bergmann L, Große W, Koth P (1976) Influence of ammonium and nitrate on N-metabolism, malate accumulation and malic enzyme activity in suspension cultures of Nicotiana tabacum var. `Samsun’. Z Pflanzenphysiol 80: 60Google Scholar
  10. Breuling M, Spieler H, Schwantag D, Alfermann AW, Reinhard E (1986) Large scale cultivation of plant cells for production of natural products. Bioverfahrenstechnik-Kongress, Biochemical Engineering, Stuttgart (Abstr )Google Scholar
  11. Cella R, Galun E (1980) Utilization of irradiated carrot cell suspensions as feeder layer for cultured Nicotiana cells and protoplasts. Plant Sci Lett 19: 243CrossRefGoogle Scholar
  12. Cleland N, Enfors SO (1987) A biological system for studies on mixing in bioreactors. Bioproc Eng 2: 115CrossRefGoogle Scholar
  13. Connett RJA, Hanke DE (1987) Changes in the pattern of phospholipid synthesis during the induction by cytokinin of cell division in soybean suspension cultures. Planta 170: 161CrossRefGoogle Scholar
  14. Crueger W, Crueger A (1989) Biotechnologie-Lehrbuch der angewandten Mikrobiologie. Oldenbourg, MünchenGoogle Scholar
  15. Dellweg HW (1987) Biotechnologie: Grundlagen und Verfahren. VCH Verlagsgesellschaft, WeinheimGoogle Scholar
  16. Dougall DK, Weyrauch KW (1980) Growth and anthocyan production by carrot suspension cultures grown under chemostat conditions with phosphate as the limiting nutrient. Biotechnol BioEng 22: 337CrossRefGoogle Scholar
  17. Dougall DK, LaBrake S, Whitten GH (1983a) The effect of limiting nutrients, dilution rate, culture pH, and temperature on the yield constant and anthocyan accumulation of carrot cells grown in semicontinuous chemostat cultures. Biotechnol BioEng 25: 569CrossRefGoogle Scholar
  18. Dougall DK, LaBrake S, Whitten GH (1983b) Growth and anthocyanin accumulation rates of carrot suspension cultures grown with excess nutrients after semicontinuous culture with different limiting nutrients at several dilution rates, pH’s and temperatures. Biotechnol BioEng 25: 581CrossRefGoogle Scholar
  19. Durzan DJ, Chalupa V (1976) Growth and metabolism of cells and tissue of jack pine (Pinus banksiana). Free nitrogenous compounds in cell suspension cultures of jack pine as affected by light and darkness. Can J Bot 54: 496Google Scholar
  20. Eigel L, Koop HU (1989) Nurse culture of individual cells: regeneration of colonies from single protoplasts of Nicotiana tabacum, Brassica napa, and Hordeum vulgare. J Plant Physiol 134 (5): 577CrossRefGoogle Scholar
  21. Elavummoottil OC, Duret S, Vannereau A, Cosson L, Mestre JC (1988) Selection of lactose adapted cells in Vinca minor and Datura innoxia cultures; location and characterization of ß-galactosidase and lactase activities. Plant Sci. 54: 83CrossRefGoogle Scholar
  22. Ettlinger C, Lehle L (1988) Auxin induces rapid changes in phosphatidyl-inositol metabolites. Nature 331 (6152): 176PubMedCrossRefGoogle Scholar
  23. Fidgeon C, Wilson G (1988) Uptake and accumulation of naphthalene acetic acid by cell suspension of Galium mollugo L. J Exp Bot 39 (199): 241CrossRefGoogle Scholar
  24. Fowler MW (1977) Growth of cell cultures under chemostat conditions. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue culture and its biotechnological application. Springer, Berlin Heidelberg New York, p 253CrossRefGoogle Scholar
  25. Fowler MW (1987) Process systems and approaches for large scale plant cell culture. In: Green CE, Somers DA, Hackett WP, Biesboer DD (eds) Plant tissue and cell culture. Plant biology 3. Liss, New York, p 21Google Scholar
  26. Fowler MW (1988) Problems in commercial exploitation of plant cell cultures. In: Bock B, Marsh J (eds) Application of plant cell and tissue culture. Ciba Foundation Symposium 137. Wiley, Chichester, p 239Google Scholar
  27. Fowler MW, Bond P, Scragg AH (1987) Developments in plant cell culture technology. In: Chmiel H, Hammes WP, Bailey JE (eds) Biochemical engineering. Fischer, Stuttgart, p 333Google Scholar
  28. Galun E (1981) Plant protoplasts as physiological tools. Annu Rev Plant Physiol 32: 237CrossRefGoogle Scholar
  29. Giovanelli J, Mudd SH, Datko AK (1980) Sulfur amino acids in plants. In: Stumpf PK, Conn EE (eds in Chief) The biochemistry of plants, vol 5. Miflin BJ (ed) Amino acids and derivatives. Academic Press, New York, p 453Google Scholar
  30. Gleba YY (1978) Microdroplet culture: tobacco plants from single mesophyll protoplasts. Naturwissenschaften 65: 158CrossRefGoogle Scholar
  31. Goldbach H (1985) Influence of boron nutrition on net uptake and efflux of 32P and 14C-glucose in Helianthus annuus roots and cell cultures of Daucus carota. J Plant Physiol 118: 431PubMedCrossRefGoogle Scholar
  32. Gressel J (1984) Plant tissue culture systems for screening of plant growth regulators: hormones, herbicides, and natural phytotoxins. Adv Cell Cult 3: 93Google Scholar
  33. Hahlbrock K, Schröder J, Vieregge J (1980) Enzyme regulation in parsley and soybean cell cultures. Adv Biochem Eng 18: 39Google Scholar
  34. Hartmeier W (1986) Immobilisierte Biokatalysatoren. Springer, Berlin Heidelberg New YorkGoogle Scholar
  35. Hashimoto T, Azechi S (1988) Bioreactors for the large-scale culture of plant cells. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 4. Medicinal and aromatic plants I. Springer, Berlin Heidelberg New York, p 104Google Scholar
  36. Heuptee van RB, Tam AS (1988) Peptides released by cultured peanut cells during growth. J Plant Physiol 133: 645CrossRefGoogle Scholar
  37. Hüsemann W, Barz W (1977) Photoautotrophic growth and photosynthesis in cell suspension cultures of Chenopodium rubrum. Physiol Plant 40: 77CrossRefGoogle Scholar
  38. Hüsemann W, Reinert J (1976) Steuerung des Wachstums und der Morphogenese von Zellkulturen aus Crepis capillaris durch Licht und Phytohormone. Protoplasma 90: 353CrossRefGoogle Scholar
  39. Ikeda T, Niino K, Kataoka J, Matsumoto T (1987) The effects of phosphate concentration on growth in Mirabilis jalapa cultured cells. Agric Biol Chem 51 (9): 2611CrossRefGoogle Scholar
  40. Jones LE, Hildebrandt AC, Riker AJ, Wu JH (1960) Growth of somatic tobacco cells in microculture Am J Bot 47: 468Google Scholar
  41. Jose U, Pedersen H, Chin ChK (1983) Immobilization of plant cells in a hollow-fiber reactor. Ann NY Acad Sci 413: 409CrossRefGoogle Scholar
  42. Kargi F, Rosenberg MZ (1987) Plant cell bioreactors: present status and future trends. Biotechnol Prog 3 (1): 1CrossRefGoogle Scholar
  43. Kato K, Shiozawa Y, Yamada A, Nishida K, Noguchi M (1972) A jar fermenter culture of Nicotiana tabacum L. cell suspension. Agric Biol Chem 36: 899CrossRefGoogle Scholar
  44. Kato A, Fukasawa A, Shimizu Y, Soh Y, Nagai S (1977) Requirements of PO;, SOL, K+ and Ca’ for the growth of tobacco cells in suspension culture. J Ferment Technol 55: 207Google Scholar
  45. Kimball SL, Beversdorf WD, Bingham ET (1975) Influence of osmotic potential on growth and development of soybean tissue cultures. Crop Sci 15 (6): 750CrossRefGoogle Scholar
  46. King PJ, Mansfield KJ, Street HE (1973) Control of growth and cell division in plant cell suspension cultures. Can J Bot 51: 1807CrossRefGoogle Scholar
  47. Klapheck S, Große W, Bergmann L (1982) Effect of sulfur deficiency on protein synthesis and amino acid accumulation in cell suspension culture of Nicotiana tabacum. Z Pflanzenphysiol 108: 235Google Scholar
  48. Koop HU, Schweiger HG (1985) Regeneration of plants from individually cultivated protoplasts using an improved microculture system. J Plant Physiol 121: 245CrossRefGoogle Scholar
  49. Kreis W (1987) Untersuchungen zur Kompartimentierung der Cardenolid-Biotransformation in Digitalis lanata Zellkulturen. Dissertation, Univ TübingenGoogle Scholar
  50. Lee JH, An G (1986) Industrial application and genetic engineering of plant cell cultures. Enzyme Microb Technol 8: 260CrossRefGoogle Scholar
  51. Letham DS, Palni LMS (1983) The biosynthesis and metabolism of cytokinins. Annu Rev Plant Physiol 34: 163CrossRefGoogle Scholar
  52. Logemann H, Bergmann L (1974) Influence of light and medium on the plating efficiency of isolated cells from callus cultures of Nicotiana tabacum var. ‘Samsun’. Planta 121: 283CrossRefGoogle Scholar
  53. Mangold HK (1977) The common and anusual lipids of plant cell suspension cultures. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue and its biotechnological application. Springer, Berlin Heidelberg New York, p 421Google Scholar
  54. Märkl H (1989) Folien und Membranen als neue Elemente im Fermenterbau. Forum Mikrobiol 12: 234Google Scholar
  55. Matsumoto T, Okunishi K, Noguchi M (1976) Defined medium for crown gall cells of tobacco in suspension culture. Agric Biol Chem 40: 1335CrossRefGoogle Scholar
  56. McHale NA (1985) Conditions of strict autotrophic culture of tobacco callus. Plant Physiol 77: 240PubMedCrossRefGoogle Scholar
  57. McHale NA, Zeltch J, Peterson RB (1987) Effects of CO2 and 02 on photosynthesis and growth of autotrophic tobacco callus. Plant Physiol 84: 1055PubMedCrossRefGoogle Scholar
  58. Mizukami H, Konoshima M, Tabata M (1977) Effects of nutritional factors on shikonin derivative formation in Lithospermum callus cultures. Phytochemistry 16: 1183CrossRefGoogle Scholar
  59. Muir WH (1953) Culture conditions favouring the isolation and growth of single cells from higher plants in vitro. PhD Thesis, Univ Wisconsin, MadisonGoogle Scholar
  60. Muir WH, Hildebrandt AC, Riker AJ (1958) The preparation, isolation and growth in culture of single cells from higher plants. Am J Bot 45: 589CrossRefGoogle Scholar
  61. Murashige T (1974) Plant propagation through tissue culture. Annu Rev Plant Physiol 25: 135CrossRefGoogle Scholar
  62. Nesius KK, Fletcher JS (1973) Carbon dioxide and pH requirements of non-photosynthetic tissue culture cells. Physiol Plant 28: 259CrossRefGoogle Scholar
  63. Noguchi M, Matsumoto T, Hirata Y, Tamamoto K, Katsuyama A, Kato A, Azechi A, Kato K (1977) Improvement of growth rates of plant cell cultures. In: Barz W, Reinhard E, Zenk MH (eds) Plant tissue and its biotechnological application. Springer, Berlin Heidelberg New York, p 85CrossRefGoogle Scholar
  64. Ohira K, Ikeda M, Ojima K (1975) Thiamine requirement of various plant cells in suspension culture. Plant Cell Physiol 17: 583Google Scholar
  65. Parfitt DE, Almehdi AA, Bloksberg LN (1988) Use of organic buffers in plant tissue culture systems. Sci Hortic 36: 157CrossRefGoogle Scholar
  66. Prenosil JE, Pedersen H (1983) Immobilized plant cell reactors. Enzyme Microb Technol 5: 323CrossRefGoogle Scholar
  67. Pu HT, Yang RYK, Saus FL (1989) Ionotrophic release and transport of alkaloids from Catharanthus roseus cells in a ceramic hollow fiber reactor. Biotechnol Lett 11 (2): 83CrossRefGoogle Scholar
  68. Raveh D, Huberman E, Galun E (1973) In vitro culture of tobacco protoplasts: use of feeder techniques to support division of cells plated at low densities. In Vitro 9: 216Google Scholar
  69. Redinbaugh JP, Campbell WH (1991) Higher plant response to environmental nitrate. Physiol Plant 82: 640CrossRefGoogle Scholar
  70. Rittershaus E, Brummer B, Stiller W, Weiss A (1989) Großtechnische Fermentation von pflanzlichen Zellkulturen. BioEng 34: 51Google Scholar
  71. Robins RJ, Hanley AB, Richards SR, Fenwick GR, Rhodes MJC: (1987) Uncharacteristic alkaloid synthesis by suspension cultures of Cinchona pubescens fed with L-tryptophan. Plant Cell Tissue Organ Cult 9: 49CrossRefGoogle Scholar
  72. Rogers SMD, Orgen WL, Widholm JM (1988) Comparison of photosynthetic characteristics of two photoautotrophic cell suspension cultures of soybean. Plant Sci 56: 69CrossRefGoogle Scholar
  73. Rokem JS, Goldberg J (1985) Secondary metabolites from plant cell suspension cultures: methods for yield improvement. Adv Biotechnol Proc 4: 241Google Scholar
  74. Rudge K, Morris P (1986) The effect of osmotic stress on growth and alkaloid accumulation in Catharanthus roseus. In: Morris P, Scragg, AH, Stafford A, Fowler, MW (eds), Secondary metabolism in plant cell cultures. Cambridge University Press, Cambridge, p 75Google Scholar
  75. Sakuta M, Takagi T, Komamine A (1987a) Effects of sucrose on betacyanin accumulation and growth in suspension cultures of Phytolacca americana. Physiol Plant 71: 455CrossRefGoogle Scholar
  76. Sakuta M, Takagi T, Komamine A (1987b) Effects of nitrogen source on betacyanin accumulation and growth in suspension cultures of Phytolaca americana. Physiol Plant 71: 459CrossRefGoogle Scholar
  77. Schmauder HP, Doebel P (1990) Plant cell cultivation as a biotechnological method. Acta Biotechnol 10 (6): 501CrossRefGoogle Scholar
  78. Schmidt WE, Heim S, Wylegalla C, Helmbrecht C, Wagner KG (1992) Characterization of phosphate uptake by suspension cultured Catharanthus roseus cells. J Plant Physiol 140: 179CrossRefGoogle Scholar
  79. Scragg A (1991) Plant cell bioreactors. In: Stafford A, Warren G (eds) Plant cell and tissue culture. Open University Press, Milton Keynes, p 221Google Scholar
  80. Seibert M, Wetherbee PJ, Job DD (1975) The effects of light intensity and spectral quality on growth and shoot initiation in tobacco callus. Plant Physiol 56: 130PubMedCrossRefGoogle Scholar
  81. Staba EJ (1980) Plant tissue culture as a source of biochemicals. CRC Press, Boca RatonGoogle Scholar
  82. Tanaka H, Nishijima F, Suwa M, Iwamoto T (1983) Rotating drum fermentor for plant cell suspension cultures. Biotechnol Bioeng 25 (10): 2359CrossRefGoogle Scholar
  83. Tischner R, Hüttermann A (1980) Regulation of glutamine synthetase by light and during nitrogen deficiency in synchronous Chlorella scrokiniana. Plant Physiol 66: 805PubMedCrossRefGoogle Scholar
  84. Towill LE, Mazur P (1976) Osmotic shrinkage as a factor in freezing injury in plant tissue cultures. Plant Physiol 57: 290PubMedCrossRefGoogle Scholar
  85. Tulecke W, Nickell LG (1959) Production of large amounts of plant tissue by submerged culture. Science 130: 863PubMedCrossRefGoogle Scholar
  86. Ulbrich B (1988) Pflanzliche Zellkulturen an der Schwelle zur industriellen Nutzung. BioEng 1: 27Google Scholar
  87. Veliky JA, Rose D (1973) Nitrate and ammonium as nutrients for plant cell cultures. Can J Bot 51: 1837CrossRefGoogle Scholar
  88. Viets FG Jr (1944) Calcium and other polyvalent cations as accelerators of ion accumulation by excised barley roots. Plant Physiol 19: 456CrossRefGoogle Scholar
  89. Wallner SJ, Nevins DJ (1973) Formation and dissociation of cell aggregates in suspension cultures of Paul’s scarlet rose. Am J Bot 60 (3): 255CrossRefGoogle Scholar
  90. Willemot RM, Durand G (1977) Les reacteurs biologiques. La Recherche 18 (188): 614Google Scholar
  91. Wilson G (1980) Continuous culture of plant cell using the chemostat principle. Adv Biochem Eng 16: 1CrossRefGoogle Scholar
  92. Wink M (1984) Evidence for an extracellular lytic compartment of plant cell suspension cultures: the cell culture medium. Naturwissenschaften 71: 635CrossRefGoogle Scholar
  93. Wink M (1985) Composition of the spent cell culture medium 1. Time course of ethanol formation and the excretion of hydrolytic enzymes into the medium of suspension cultured cells of Lupinum polyphyllus. J Plant Physiol 121 (3): 287CrossRefGoogle Scholar
  94. Yamada Y, Sato F (1981) Production of berberine in cultured cells of Coptis japonica. Phytochemistry 20: 545CrossRefGoogle Scholar
  95. Zenk MH, El-Shagi H, Schulte U (1975) Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med Suppl, p 79Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Rudolf Endress
    • 1
  1. 1.SchorndorfGermany

Personalised recommendations