Skip to main content

The Violation of Reflection Symmetries in the Laws of Atomic Physics

  • Chapter
Writings on Physics and Philosophy

Abstract

In discussing the degrees of symmetry of physical laws, it is useful to divide the interactions of physics into three categories: strong interactions, which include those between nucleons and between nucleons and mesons; electromagnetic interactions, of medium strength, which are also responsible for the outer shell of the atom; and weak interactions, to which category belong all the phenomena of beta-radioactivity associated with the emission or absorption of neutrinos, as well as the decay of Λ- and K-mesons, in which neutrinos are not involved.

From Experientia 14, 1–5 (1958).

The reflections of charge (C), space-coordinates (P) and time (T) and, particularly in connection with the space reflection, the distinction between polar vector and axial vector, scalar and pseudoscalar products are explained. The three different kinds of strong, medium (electromagnetic) and weak interactions are introduced. While the first two of them fulfil all reflection invariances mentioned separately, Lee and Yang showed (1956) that for the weak interactions no sufficient empirical evidence existed for the reflection invariances, and they also suggested experiments for checking them. The qualitative aspect of the experimental results available in November 1957, which show the violation of the C and the P invariance for weak interactions, is reviewed. The methods here applied are beta-decay of oriented nuclei, polarisation of emitted electrons in beta-decay, beta-gamma correlation, asymmetry in the decay of µ-mesons generated by π-meson-decay. The solution of the θ-τ-puzzle by the assumption of a single particle (K-meson) without defined parity is mentioned. In the concluding section some aspects of the unsolved theoretical problems of the deeper reasons for the symmetry violations of the weak interactions are briefly discussed which will possibly also lead into open cosmological questions.*

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The letter C denotes “charge”.

    Google Scholar 

  2. T. D. Lee and C. N. Yang, Physical Review 104, 254 (1956).

    Article  ADS  Google Scholar 

  3. The CPT-theorem was first clearly recognised by G. Lüders, Det Kongelige Danske Videnskabernes Selskabs, matematisk-fysiske Meddelelser 28, No. 5 (1954). See also Annals of Physics (New York) 2, 1 (1957).

    Google Scholar 

  4. Further references: J. Schwinger, Physical Review 82, 914 (1951)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. W. Pauliin Niels Bohr and the Development of Physics (Pergamon Press, London 1955), p. 30; for non-local theories a condition equivalent to the CPTtheorem, which is satisfied identically for local theories

    Google Scholar 

  6. has been given by R. Jost, Helvetica Physica Acta 30, 409 (1957)

    MathSciNet  MATH  Google Scholar 

  7. for further applications see T. D. Lee, R. Oehme and C. N. Yang, Physical Review 106, 340 (1957).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson, Physical Review 105, 1413 (1957): Co60;

    Article  ADS  Google Scholar 

  9. H. Postma, W. J. Huiskamp, A. R. Miedema, M. J. Steenland, H. A. Tolhoek and C. J. Gorter, Physica 23, 259 (1957): CoS8

    Article  ADS  Google Scholar 

  10. E. Ambler, R. W. Hayward, D. D. Hoppes, R. P. Hudson and C. S. Wu, Physical Review 106, 1361 (1957): Co60, Co58

    Article  ADS  Google Scholar 

  11. analogous experiment with polarised neutrons: M. T. Burgy, R. J. Epstein, V. E. Krohn, T. B. Novey, S. Raboy, G. R. Ringo and V. L. Telegdi, Physical Review 107, 1731 (1957).

    Article  ADS  Google Scholar 

  12. T. D. Lee and C. N. Yang, Physical Review 104, 254 (1956);

    Article  ADS  Google Scholar 

  13. T. D. Lee, R. Oehme and C. N. Yang, Physical Review 106, 340 (1957).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. First carried out by H. Frauenfelder, R. Bobone, E. von Goeler, N. Levine, H. R. Lewis, R. N. Peacock, A. Rossi and G. de Pasquali, Physical Review 106, 386 (1957): Co60

    Article  ADS  Google Scholar 

  15. afterwards by M. Goldhaber, L. Grodzins and A. W. Sunyar, Physical Review 106, 826 (1957)

    Article  ADS  Google Scholar 

  16. Bremsstrahlung; S. S. Hanna and R. S. Preston, Physical Review 106, 1363 (1957): Cu64

    Article  ADS  Google Scholar 

  17. H. Frauenfelder, A. O. Hanson, N. Levine, A. Rossi and G. de Pasquali, Physical Review 107, 643 (1957): Moller scattering

    Article  ADS  Google Scholar 

  18. M. Deutsch, B. Gittelmann, R. W. Bauer, L. Grodzins and A. W. Sunyar, Physical Review 107, 1733 (1957): Ga66, C134

    Article  ADS  Google Scholar 

  19. A. de Shalit, S. Kuperman, H. J. Lipkin and T. Rothem, Physical Review 107, 1459 (1957): double scattering

    Article  ADS  Google Scholar 

  20. F. Boehm, T. B. Novey, C. A. Barnes and B. Stech, Physical Review 108, 1497 (1957): N13

    Article  Google Scholar 

  21. H. Schopper, Philosophical Magazine 2, 710 (1957)

    Article  ADS  Google Scholar 

  22. H. Appel and H. Schopper, Zeitschrift für Physik 149, 103 (1957)

    Article  ADS  Google Scholar 

  23. F. Boehm and A. H. Wapstra, Physical Review 106, 1364 (1957); 107, 1202 and 1462 (1957).

    Article  ADS  Google Scholar 

  24. R. L. Garwin, L. M. Ledermann and M. Weinrich, Physical Review 105, 1415 (1957): cyclotron

    Article  ADS  Google Scholar 

  25. J. I. Friedman and V. L. Telegdi, Physical Review 105, 1681 (1957): photographic plates

    Article  ADS  Google Scholar 

  26. see also D. Berley, T. Coffin, R. L. Garwin, L. M. Ledermann and M. Weinrich, Physical Review 106, 835 (1957).

    Article  ADS  Google Scholar 

  27. A. Salam, Nuovo Cimento 5, 229 (1957)

    Article  MathSciNet  Google Scholar 

  28. T. D. Lee and C. N. Yang, Physical Review 105, 1671 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  29. L. Landau, Nuclear Physics 3, 127 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  30. See footnote 2.

    Google Scholar 

  31. See in this connection R. Dalitz, Philosophical Magazine 44, 1068 (1953)

    Google Scholar 

  32. E. Fabri, Nuovo Cimento 11, 479 (1954); also Proceedings of the sixth Rochester Conference (1956).

    Article  MATH  Google Scholar 

  33. Expression due to Paul Ehrenfest.

    Google Scholar 

  34. T. D. Lee: “Weak Interaction”, in Proceedings of the seventh Rochester Conference (1957), Section on Mach’s principle; for the general discussion see also E. P. Wigner, Reviews of Modern Physics 29, 255 (1957).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pauli, W. (1994). The Violation of Reflection Symmetries in the Laws of Atomic Physics. In: Enz, C.P., von Meyenn, K. (eds) Writings on Physics and Philosophy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02994-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02994-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08163-7

  • Online ISBN: 978-3-662-02994-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics