Chaos pp 89-114 | Cite as

The Double Pendulum

  • H. J. Korsch
  • H.-J. Jodl


The planar double pendulum consists of two coupled pendula, i.e. two point masses m 1 and m 2 attached to massless rods of fixed lengths l 1 and l 2 moving in a constant gravitational field (compare Fig. 5.1). For simplicity, only a planar motion of the double pendulum is considered. Such a planar double pendulum is most easily constructed as a mechanical model to demonstrate the complex dynamics of nonlinear (i.e. typical) systems in mechanics, in contrast to the more frequently discussed linear (i.e. atypical) harmonic oscillators. Here, numerical experiments are helpful for investigating the complex dynamics, in particular by means of Poincaré sections.


Phase Space Periodic Orbit Invariant Curf Main Menu Double Pendulum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [5.1]
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, NumericalRecipes (Cambridge University Press, Cambridge 1986)Google Scholar
  2. [5.2]
    R. W. Stanley, Numerical methods in mechanics, Am. J. Phys. 52 (1984) 499ADSCrossRefGoogle Scholar
  3. [5.3]
    T. Shinbrot, C. Grebogi, J. Wisdom, and J. A. Yorke, Chaos in a double pendulum, Am. J. Phys. 60 (1992) 491ADSCrossRefGoogle Scholar
  4. [5.4]
    P. H. Richter and H.-J. Scholz, Das ebene Doppelpendel — The planar double pendulum, Film C1574, Publ. Wiss. Film., Sekt. Techn. Wiss./Naturw., Ser.9 (1986) Nr. 7/C1574Google Scholar
  5. [5.5]
    F. C. Moon, Chaotic Vibrations (John Wiley, New York 1987)MATHGoogle Scholar
  6. [5.6]
    D. R. Stump, Solving classical mechanics problems by numerical integration of Hamilton’s equations, Am. J. Phys. 54 (1986) 1096ADSCrossRefGoogle Scholar
  7. [5.7]
    R. B. Levien and S. M. Tan, Double pendulum: An experiment in chaos, Am. J. Phys. 61 (1993) 1038ADSCrossRefGoogle Scholar
  8. [5.8]
    D.J. Tritton, Ordered and chaotic motion of a forced spherical pendulum, Eur. J. Phys. 7 (1986) 162CrossRefGoogle Scholar
  9. [5.9]
    R. Cuerno, A. F. Rafiada, and J. J. Ruiz-Lorenzo, Deterministic chaos in the elastic pendulum: A simple laboratory for nonlinear dynamics, Am. J. Phys. 60 (1992) 73ADSMATHCrossRefGoogle Scholar
  10. [5.10]
    K. Briggs, Simple experiments in chaotic dynamics, Am. J. Phys. 55 (1987) 1083ADSCrossRefGoogle Scholar
  11. [5.11]
    J. A. Blackburn, H. J. T. Smith, and N. Gronbech-Jensen, Stability and Hopf bifurcations in an inverted pendulum, Am. J. Phys. 60 (1992) 903MathSciNetADSMATHCrossRefGoogle Scholar
  12. [5.12]
    H. J. T. Smith and J. A. Blackburn, Experimental study of an inverted pendulum, Am. J. Phys. 60 (1992) 909MathSciNetADSMATHCrossRefGoogle Scholar
  13. [5.13]
    N. Alessi, C. W. Fischer, and C. G. Gray, Measurement of amplitude jumps and hysteresis in a driven inverted pendulum, Am. J. Phys. 60 (1992) 755ADSCrossRefGoogle Scholar
  14. [5.14]
    D. Permann and I. Hamilton, Self-similar and erratic transient dynamics for the linearly damped simple pendulum, Am. J. Phys. 60 (1992) 442ADSCrossRefGoogle Scholar
  15. [5.15]
    Y. Cohen, S. Katz, A. Perez, E. Santo, and R. Yitzak, Stroboscopic views of regular and chaotic orbits, Am. J. Phys. 56 (1988) 1042ADSCrossRefGoogle Scholar
  16. [5.16]
    E. Marega, Jr., S. C. Zilio, and L. Ioriatti, Electromechanical analog for Landau’s theory of second-order symmetry-breaking transitions, Am. J. Phys. 58 (1990) 655ADSCrossRefGoogle Scholar
  17. [5.17]
    E. Marega, Jr., L. Ioriatti, and S. C. Zilio, Harmonic generation and chaos in an electromechanical pendulum, Am. J. Phys. 59 (1991) 858ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • H. J. Korsch
    • 1
  • H.-J. Jodl
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations