Chaos pp 11-44 | Cite as

Nonlinear Dynamics and Deterministic Chaos

  • H. J. Korsch
  • H.-J. Jodl

Abstract

The aim of this chapter is to provide an introduction to the theory of nonlinear systems. We assume that the reader has a background in classical dynamics and a basic knowledge of differential equations, but most readers of this book will only have a vague notion of chaotic dynamics. The computer experiments in the following chapters will (hopefully) lead to a better understanding of this new and exciting field. These chapters form the core of the book and are written at a level suitable for advanced undergraduate students. An understanding and interpretation of the numerical results is, however, impossible without a knowledge of the relevant theory.

Keywords

Entropy Manifold Coherence Dition Ghost 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [2.1]
    J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York 1983MATHGoogle Scholar
  2. [2.2]
    A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer, New York 1983)MATHCrossRefGoogle Scholar
  3. [2.3]
    J. M. T. Thompson and H. B. Stewart, Nonlinear Dynamics and Chaos (John Wiley, Chichester 1986)MATHGoogle Scholar
  4. [2.4]
    H. G. Schuster, Deterministic Chaos (VCH, Weinheim 1988)Google Scholar
  5. [2.5]
    M. Ozorio de Almeida, Hamiltonian Systems — Chaos and Quantization (Cambridge University Press, Cambridge 1988)MATHGoogle Scholar
  6. [2.6]
    M. Tabor, Chaos and Integrability in Nonlinear Dynamics (John Wiley, New York 1989)MATHGoogle Scholar
  7. [2.7]
    G. L. Baker and J. P. Gollub, Chaotic Dynamics — An Introduction (Cambridge Univ. Press, Cambridge 1990)MATHGoogle Scholar
  8. [2.8]
    J. Frøyland, Introduction to Chaos and Coherence (IOP Publishing, Bristol 1992)Google Scholar
  9. [2.9]
    B.-L. Hao, Chaos (World Scientific, Singapore 1984)MATHGoogle Scholar
  10. [2.10]
    P. Cvitanovic, Universality in Chaos (Adam Hilger, Bristol 1984)MATHGoogle Scholar
  11. [2.11]
    R. S. MacKay and J. D. Meiss, Hamiltonian Dynamical Systems (Adam Hilger, Bristol 1987)MATHGoogle Scholar
  12. [2.12]
    D. Ruelle, Strange attractors, Math. Intelligencer 2 (1980) 126 (reprinted in: P. Cvitanovic, Universality in Chaos, Ada) Hilger, Bristol 1984.MathSciNetMATHCrossRefGoogle Scholar
  13. [2.13]
    S. Smale, Diffeomorphisms with many periodic points, in: S. S. Cairns, editor, Differential and Combinatorial Topology, Princeton University Press, Princeton 1963Google Scholar
  14. [2.14]
    D. Ruelle and F. Takens, On the nature of turbulence, Commun. Math. Phys. 20 (1971) 167 (reprinted in: B.-L. Hao, Chaos, World Scientific, Singapore) 1984.MathSciNetADSMATHCrossRefGoogle Scholar
  15. [2.15]
    S. E. Newhouse, D. Ruelle, and F. Takens, Occurrence of strange axiom A attractors near quasiperiodic flows on T m, m >3, Commun. Math. Phys. 64 (1978) 35MathSciNetADSMATHCrossRefGoogle Scholar
  16. [2.16]
    P. Manneville and Y. Pomeau, Intermittency and the Lorenz model, Phys. Lett. A 75 (1979) 1MathSciNetADSCrossRefGoogle Scholar
  17. [2.17]
    Y. Pomeau and P. Manneville, Intermittent transition to turbulence in dissi-pative dynamical systems, Commun. Math. Phys. 74 (1980) 189 (reprinted in: B.-L. Hao, Chaos, World Scientific, Singapore) 1984 and P. Cvitanovic, Universality in Chaos, Adam Hilger, Bristol 1984.MathSciNetADSCrossRefGoogle Scholar
  18. [2.18]
    G. D. Birkhoff, Nouvelles recherches sur les systems dynamiques, Mem. Pont. Acad. Sei. Novi Lyncaei 1 (1935) 85Google Scholar
  19. [2.19]
    M. V. Berry, Regular and irregular motion, in: S. Jorna, editor, Topics in Nonlinear Dynamics, page 16. Am. Inst. Phys. Conf. Proc. Vol, 46 1978 (reprinted in R. S. MacKay and J. D. Meiss, Hamiltonian Dynamical Systems, Adam Hilger, Bristol 1987.Google Scholar
  20. [2.20]
    K. R. Meyer, Generic bifurcations of periodic points, Trans. AMS 149 (1970) 95MATHCrossRefGoogle Scholar
  21. [2.21]
    J. M. Greene, R. S. MacKay, F. Vivaldi, and M. J. Feigenbaum, Universal behaviour in families of area-preserving maps, Physica D 3 (1981) 468 (reprinted in: R. S. MacKay and J. D. Meiss, Hamiltonian Dynamical Systems, Adam Hilger, Bristol 1987.MathSciNetADSMATHCrossRefGoogle Scholar
  22. [2.22]
    J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications (Springer, New York 1976)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • H. J. Korsch
    • 1
  • H.-J. Jodl
    • 1
  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations