Skip to main content
Book cover

Chaos pp 249–290Cite as

Ordinary Differential Equations

  • Chapter
  • 172 Accesses

Abstract

Dynamical systems are often expressed in terms of ordinary differential equations. An example are the canonical equations of motion in Hamiltonian systems

$${\dot p_i} = - \frac{{\partial H}}{{\partial {q_i}}},\;{\dot p_i} = \frac{{\partial H}}{{\partial {q_i}}},$$
((12.1))

where the time derivatives of the canonical coordinates and momenta are given by the partial derivatives of the Hamiltonian. Typically, the right hand side of these equations is a nonlinear function of the variables p i and q i i.e. (12.1) is a nonlinear dynamical system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge 1986)

    Google Scholar 

  2. A. H. Nayfeh and D. T. Mook, Nonlinear Oscillations (John Wiley, New York 1979)

    MATH  Google Scholar 

  3. W. Magnus and S. Winkler, Hill’s Equation (Wiley Interscience, New York 1966)

    MATH  Google Scholar 

  4. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover Publications, New York 1970)

    Google Scholar 

  5. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia 1976)

    Google Scholar 

  6. H. R. Lewis, Class of exact invariants for classical and quantum time-dependent harmonic oscillators, J. Math. Phys. 9 (1968) 1976

    Article  ADS  MATH  Google Scholar 

  7. E. W. Milne, The numerical determination of characteristic numbers, Phys. Rev. 35 (1930) 863

    Article  ADS  Google Scholar 

  8. J. A. Nunez, F. Bensch, and H. J. Korsch, On the solution of Hill’s equation using Milne’s method, J. Phys. A 24 (1991) 2069

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. F. Bensch, Thesis, (Univ. Kaiserslautern, 1993)

    Google Scholar 

  10. E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963) 130 (reprinted in: P. Cvitanovic, Universality in Chaos (Ada) Hilger, Bristol 1984).

    Article  ADS  Google Scholar 

  11. H. G. Schuster, Deterministic Chaos (VCH, Weinheim 1988)

    Google Scholar 

  12. J. Froyland, Introduction to Chaos and Coherence (IOP Publishing, Bristol 1992)

    Google Scholar 

  13. O. E. Rössler, An equation for continuous chaos, Phys. Lett. A 57 (1976) 397

    Article  ADS  Google Scholar 

  14. M. Hénon and C. Heiles, The applicability of the third integral of motion: some numerical experiments, Astron. J. 69 (1964) 73

    Article  ADS  Google Scholar 

  15. M. V. Berry, Regular and irregular motion, in: S. Jorna, editor, Topics in Nonlinear Dynamics, page 16. Am. Inst. Phys. Conf. Proc. Vol, 46 1978 (reprinted in: R. S. MacKay and J. D. Meiss, Hamiltonian Dynamical Systems (Adam Hilger, Bristol 1987).

    Google Scholar 

  16. M. Hénon, Numerical exploration of Hamiltonian systems, in: G. Iooss, H. G. Helleman, and R. Stora, editors, Les-Houches Summer School 1981 on Chaotic Behaviour of Deterministic Systems, page 53, North-Holland, Amsterdam 1983

    Google Scholar 

  17. R. May, Simple mathematical models with very complicated dynamics, Nature 261 (1976) 459 (reprinted in: B.-L. Hao, Chaos (World Scientific, Singapore) 1984) and P. Cvitanovic, Universality in Chaos (Adam Hilger, Bristol, 1984).

    Article  ADS  Google Scholar 

  18. P. Manneville and Y. Pomeau, Intermittency and the Lorenz model, Phys. Lett. A 75 (1979) 1

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Prøyland and K. H. Alfsen, Lyapunov-exponent spectra for the Lorenz model, Phys. Rev. A 29 (1984) 2928

    Article  ADS  Google Scholar 

  20. C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics (Springer, Berlin-Heidelberg-New York 1971)

    Book  MATH  Google Scholar 

  21. R. Abraham and J. E. Marsden, Foundations of Mechanics (Benjamin, Reading 1978)

    MATH  Google Scholar 

  22. W. E. Thirring, Classical Dynamical Systems (Springer, New York 1973)

    Google Scholar 

  23. J. M. A. Danby, Celestial Mechanics (Willman-Bell, Richmond 1989)

    Google Scholar 

  24. M. Tabor, Chaos and Integrability in Nonlinear Dynamics (John Wiley, New York 1989)

    MATH  Google Scholar 

  25. J. Hietarinta, Direct methods for the search of the second invariant, Phys. Rep. 147 (1987) 87

    Article  MathSciNet  ADS  Google Scholar 

  26. F. Takens, Lecture Notes in Math. Vol 898 (Springer, Heidelberg-New York 1991)

    Google Scholar 

  27. A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents from a time series, Physica D 16 (1985) 285

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. B. Van der Pol and J. Van der Mark, Frequency demultiplication, Nature 120 (1927) 363

    Article  ADS  Google Scholar 

  29. J. J. Stoker, Nonlinear Vibrations (Interscience, New York 1950)

    MATH  Google Scholar 

  30. J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York 1983,

    MATH  Google Scholar 

  31. F. C. Moon, Chaotic Vibrations (John Wiley, New York 1987)

    MATH  Google Scholar 

  32. R. Graham, Chaos in lasers, in: E. Frehland, editor, SynergeticsFrom Microscopic to Macroscopic Order (Springer, Berlin-Heidelberg-New York 1984)

    Google Scholar 

  33. R. Graham and J. Keymer, Level repulsion in power spectra of chaotic Josephson junctions, Phys. Rev. A 44 (1991) 6281

    Article  ADS  Google Scholar 

  34. R. Graham, M. Schlautmann, and J. Keymer, Dynamical localization in Josephson junctions, Phys. Rev. Lett. 67 (1991) 255

    Article  ADS  Google Scholar 

  35. M. Cirillo and N. F. Pedersen, On bifurcation and transition to chaos in a Josephson junction, Phys. Lett. A 90 (1982) 150

    Article  ADS  Google Scholar 

  36. W. J. Yeh and Y. H. Kao, Intermittency in Josephson junctions, Appl. Phys. Lett. 42 (1983) 299

    Article  ADS  Google Scholar 

  37. A. R. Kolovsky, Steady-state regime for the rotational dynamics of a molecule at the condition of quantum chaos, Phys. Rev. A 48 (1993) 3072

    Article  ADS  Google Scholar 

  38. N. Moiseyev, H. J. Korsch, and B. Mirbach, Classical and quantum chaos in molecular rotational excitation by AC electric fields, Z. Phys. D 29 (1994) 125

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Korsch, H.J., Jodl, HJ. (1994). Ordinary Differential Equations. In: Chaos. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02991-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02991-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02993-0

  • Online ISBN: 978-3-662-02991-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics