Introduction and Problem Formulation

  • Johannes Jahn


In optimization one investigates problems of the determination of a minimal point of a functional on a nonempty subset of a real linear space. To be more specific this means: Let X be a real linear space, let S be a nonempty subset of X, and let f : S → ℝ be a given functional. We ask for the minimal points of f on S. An element \(\bar x \in S\) is called a minimal point of f on S if
$$f(\bar x)f(x)for\,all\,x \in S.$$
The set S is also called constraint set, and the functional f is called objective functional.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Johannes Jahn
    • 1
  1. 1.Institut für Angewandte MathematikUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations