Mechanics pp 385-402 | Cite as

Continuous Systems

  • Florian A. Scheck


A distinctive feature of the mechanical systems we have discussed so far is that their number of degrees of freedom is finite and hence countable. The mechanics of deformable macroscopic media goes beyond this framework. The reaction of a solid state to external forces, the flow behavior of a liquid in a force field, or the dynamics of a gas in a vessel cannot be described by means of finitely many coordinate variables. The coordinates and momenta of point mechanics are replaced by field quantities, i.e. functions or fields defined over space and time, which describe the dynamics of the system. The mechanics of continua is an important discipline of classical physics on its own and goes far beyond the scope of this book. In this epilog we introduce the important concept of dynamical field, generalize the principles of canonical mechanics to continuous systems, and illustrate them by means of some instructive examples. At the same time, this serves as a basis for electrodynamics, which is a typical and especially important field theory.


Mass Point Lagrangian Function Lorentz Transformation Lagrange Density Continuous System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Florian A. Scheck
    • 1
  1. 1.Institut für Physik, Theoretische ElementarteilchenphysikJohannes Gutenberg-UniversitätMainzGermany

Personalised recommendations