Reliability Analysis During the Design Phase

  • Alessandro Birolini

Abstract

Reliability analysis during the design phase is necessary to detect and eliminate reliability weaknesses as early as possible, and to perform comparative studies with respect to reliability. Such analysis includes failure rate and failure mode investigations as well as the verification that appropriate guidelines for reliability have been applied. This chapter introduces the methods for failure rate and failure mode analysis of complex electronic and electromechanical equipment and systems. Design guidelines for reliability are given in Section 3.4 and those for maintainability and software quality in Sections 4.3 and 5.3, respectively (for reliability tests one may refer to Chapters 3, 7, and 8). Section 2.2 deals with series/parallel structures and Section 2.3 with more complex topics (non series/parallel structures, stress/strength and drift analysis, elements with more than one failure mode), as well as with parallel models with load sharing (in particular warm and standby redundancy). A versatile program (CARP) for the computation of the predicted reliability of arbitrarily complex systems is presented in Section 2.4 (see Section 6.8.2 for the case of repairable systems). Theoretical foundations for this chapter may be found in Appendix A6.

Keywords

Dust Transportation Explosive Assure Resis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [2.1]
    Bar M., Fischer K., and Hertel G., Leistungsfähigkeit-Qualität-Zuverlassigkeit. Berlin: Transpress, 1988.Google Scholar
  2. [2.2]
    Berhard J., “Mal3nahmen und Ergebnisse in elektronischen Geräten für die Textilindustrie”. SAQ-Fachtag, Zurich 1984, Bern SAQ, pp. 17–33.Google Scholar
  3. [2.3]
    Billinton R. (Ed.), Applied Reliability Assessment in Electric Power Systems. Piscataway, NJ: IEEE Press, 1992.Google Scholar
  4. [2.4]
    Billinton A., Zuverlässigkeit von Schaltungen und Systemen. (Grad. Course ETH Zurich), 4th Ed. 1982; Zuverlässigkeitstechnik (Postgrad. Course Univ. Neuchâtel).; “Zuverlassigkeitssicherung von Automatisierungssystemen und -prozessen”. ebi, 107(1990), pp. 258–271; Qualität und Zuverlässigkeit technischer Systeme. Berlin: Springer, 3th Ed. 1991.Google Scholar
  5. [2.5]
    Catuneanu V.M. and Mihalache AN., Reliability Fundamentals. Amsterdam: Elsevier, 1989.MATHGoogle Scholar
  6. [2.6]
    Daniels B.K. (Ed.), Safety and Reliability of Programmable Electronic Systems. 1986; Achieving Safety and Reliability with Computer Systems. 1987, London: Elsevier.Google Scholar
  7. [2.7]
    Dhillon B.S., Human Reliability. New York: Pergamon, 1986.Google Scholar
  8. [2.8]
    Friedman M.A. and Tran P., “Reliability techniques for combined hardware/software systems”. Proc. Ann. Rel. and Maint Symp., 1992, pp. 290–293.Google Scholar
  9. [2.9]
    Harris A.P., “Reliability in the dormant condition”. Microel. and Rel., 20(1980), pp. 33–44.CrossRefGoogle Scholar
  10. [2.10]
    IEC 300–3–1: Dependability Management (Part 3) Application Guide, Section 1: Analysis Techniques for Dependability. 1991; -2: Collection of Dependability Data from the Field. Google Scholar
  11. 1993.
    ; 863: Presentation of Reliability, Maintainability and Availability Predictions. 1986; 1078: Analysis Techniques for Dependability — Reliability Block Diagram Method. 1991.Google Scholar
  12. [2.11]
    IEEE Std 493–1990: Recommended Practice for the Design of Reliability Industrial and Commercial Power Systems. (ANSI app. 199 I).Google Scholar
  13. [2.12]
    Klaassen KB., “Active redundancy in analogue electronic systems”. Proc. Ann. Rel. and Maint. Synp., 1975, pp. 573–578.Google Scholar
  14. [2.13]
    Kochs H.-D., Zuverlässigkeit elektrotechnischer Anlagen. Berlin: Springer, 1984.MATHCrossRefGoogle Scholar
  15. [2.14]
    Kozlov B.A. and Uschakov I.A., Reliability Handbook. New York: Holt. Rinehart and Winston, 1970.Google Scholar
  16. [2.15]
    Malcolm J.C., “R and M 2000 action - plan for tactical missiles”. Proc. Ann. Rel. and Maint. Symp., 1988, pp. 86–92.Google Scholar
  17. [2.16]
    Messerschmitt-Bolkow-Blohm (Ed.), Technische Zuverlässigkeit. Berlin: Springer, 3rd Ed. 1986.Google Scholar
  18. [2.17]
    MIL-HDBK-338: Electronic Reliability Design Handbook. Vol. 1 Ed. A 1988, Vol. II 1984.Google Scholar
  19. [2.18]
    Moltoft J., “Behind the bathtub-curve, a new model and its consequences”. Microel. and Rel. 23(1983)3, pp. 489–500.Google Scholar
  20. [2.19]
    NASA CR -1126–1129: Practical Reliability (Vol. 1 to 4). 1968.Google Scholar
  21. [2.20]
    O’ Connor P.D.T., Practical Reliability Engineering. New York: Wiley, 3th Ed. 1991.Google Scholar
  22. [2.21]
    Pecht M.G., Palmer M., and Naft J., “Thermal reliability management in PCB design”. Proc. Ann. Rel. and Maint. Synzp., 1987, pp. 312–315.Google Scholar
  23. [2.22]
    RAC, TR-82–172: RADC Thermal Guide for Reliability Engineering. 1982; CRTAWCCA: Worst Case Circuit Analysis Application Guidelines. 1993.Google Scholar
  24. [2.23]
    Rooney J.P., “Storage reliability”. Proc. Ann. Rel. and Maint. Symp., 1989, pp.178–182.Google Scholar
  25. [2.24]
    Schwob M. and Peyrache G., Traité de Fiabilité. Paris: Masson, 1969.Google Scholar
  26. [2.25]
    Shooman ML., Probabilistic Reliability-an Engineering Approach. New York: McGrawHill, 1968.Google Scholar
  27. [2.26]
    Siewiorek D.P. and Swarz R.S., Reliable Computer Systems Design and Evaluation. Bedford MA: Digital Press, 1992; Siewiorek D.P., “Architecture of fault-tolerant computers, an historical perspective”. Proc. IEEE, 79(1991)12, pp. 1710–1734.Google Scholar
  28. [2.27]
    Tobias P.A. and Trindake D.C., Applied Reliability. New York: van Nostrand Reinhold, 1986.Google Scholar
  29. [2.28]
    Suich R.C., and Patterson RL, “Minimize system cost by choosing optimal subsystem reliability and redundancy”. Proc. Ann. Rel. and Maint. Symp., 1993, pp. 293–297.Google Scholar
  30. [2.29]
    Villemeur A.,Sûreté de Fonctionnement de.s Systèmes Industrials. Paris: Eyrolles, 1988.Google Scholar
  31. [2.30]
    AFCIQ: Données de Fiabilité en Stockage des Composants Electmniques. 1983.Google Scholar
  32. [2.31]
    Bellcore, TR-TSY-000 332: Reliability Prediction Procedure for Electronic Equipment. Livingston, NJ: Bellcore, 2nd Ed. 1988.Google Scholar
  33. [2.32]
    CNET RDF 93: Recueil de Données de Fiabilité des Components Electroniques. Lan nion: CNET, 1993, also as British Telecom Handbook of Reliability HRD5 and Italtel Reliability Prediction Handbokk IRPHB93. Google Scholar
  34. [2.33]
    DIN 40039: Zuverlassigkeitsangaben für Bauelemente der Elektronik. Teil 1 + Teil 2 (E), 1988, see also draft of DIN IEC 56 (sec.) 348 (1992) and 383 (1993).Google Scholar
  35. [2.34]
    Harris A.P., Reliability and Maintainability Data for Computer, Telephone and Electronic Parts and Equipment. Ottawa: Harris-Associates, 1986.Google Scholar
  36. [2.35]
    IEE: Electronic Reliability Data — A Guide to Selected Components. London: IEE, 1981.Google Scholar
  37. [2.36]
    IEEE-Std 500–1984: Reliability Data for Nuclear-Power Generation Stations. Google Scholar
  38. [2.37]
    MIL-HDBK-217: Reliability Prediction of Electronic Equipment. Ed. F, 1991, Notice 1 of 1992.Google Scholar
  39. [2.38]
    NTT: Standard Reliability Tables for Semiconductor Devices. Tokyo: Nippon Telegr. and Tel. Corp., 1985.Google Scholar
  40. [2.39]
    RADC, MDR-21: Microcircuit Device Reliability Trend Analysis. 1985; MDR 21A: Field Experience Database. Vol I and II, 1985; NRPS: Nonoperating Reliability Prediction System. 1992; NPRD-91: Nonelectronic Parts Reliability Data. 1991; TR-89–177: VHSIC/VHSIC-like Reliability Modeling. 1989; TR-90–72: Reliability Analysis Assessment of Advanced Technologies. 1990.Google Scholar
  41. [2.40]
    Siemens, SN 29 500 Teil 1: Ausfallraten Bauelemente. München: Siemens, 1991.Google Scholar
  42. [2.41]
    Arunkumar S. and Lee S.H., “Enumeration of all minimal cut-sets for a node pair in a graph”. IEEE Trans. Rel., 28(1987)1, pp. 51–55.Google Scholar
  43. [2.42]
    Bansal V.K., “Minimal pathsets and minimal cutsets using search techniques”. Microel. and Rel., 22(1982)6, pp. 1067–1075.Google Scholar
  44. [2.43]
    Barlow R.E. and Proschan F., Mathematical Theory of Reliability. New York: Wiley, 1965; Statistical Theory of Reliability and Life Testing. New York: Holt, Rinehart and Winston, 1975.Google Scholar
  45. [2.44]
    Brenner A., Reliability Investigations of Distributed Systems: Prelim. Report. Report DS2. ETH Zurich: Reliability Lab., 1993.Google Scholar
  46. [2.45]
    Beichelt F. and Franken P., Zuverlässigkeit und Instandhaltung. Berlin: VEB Technik, 1983; Beichelt F., Zuverlässigkeits- und Instandhaltbarkeitstheorie. Stuttgart: Teubner, 1993.Google Scholar
  47. [2.46]
    Bobbio A., and Roberti L., “Distribution of the minimal completion time of parallel tasks in multi-reward semi-Markov models”. Performance Eval., 14(1992), pp. 239–256.MathSciNetMATHCrossRefGoogle Scholar
  48. [2.47]
    Bollinger R.C. and Salvia A.A., “Consecutive-k-out-of-n: F networks”. IEEE Trans. Rel., 31(1982)1, pp. 53–56; Bollinger R.C., “Strict consecutive-k-out-of-n: F systems”. IEEE Trans. Rel., 34(1985)1, pp. 50–52.Google Scholar
  49. [2.48]
    Chiang D.T. and Niu S.-C., “Reliability of consecutive-k-out-of-n: F Systems”. IEEE Trans. Rel., 30(1981)1, pp. 87–89.Google Scholar
  50. [2.49]
    Dhillon B.S. and Rayapati S.N., “Common-cause failures in repairable systems”. Proc. Ann. Rel. and Maint. Symp., 1988, pp. 283–289.Google Scholar
  51. [2.50]
    Hofle-Isophording U., Zuverlassigkeitsrechnung. Berlin: Springer, 1978.CrossRefGoogle Scholar
  52. [2.51]
    Hura G.S., “A Petri net approach to enumerate all system success paths for reliability evaluation of a complex system”; “Petri net approach to the analysis of a structured program”; “Petri net as a modeling tool”. Microel. and Re l., 22,1982)3, pp. 427–439; “Enumeration of all simple paths in a directed graph using Petri net - a systematic approach”. Microel. and Rel., 23(1983)1, pp. 157–159; “Simplification of Boolean functions through Petri nets”; “On the determination of all tie sets and minimal cut sets between any two nodes of a graph through Petri nets”. Microel. and Rel., 23(1983)3, pp. 467–475; “Enumeration of all 2-trees in a graph through Petri nets”. Microel. and Rel., 23(1983)5, pp. 851–853.Google Scholar
  53. [2.25]
    IEEE Trans. Rel., Special issue on: Network Reliability. 35(1986)3; Reliability of parallel and distributed computing networks. 38(1989)1; Experimental evaluation of computer systems reliability. 39(1990)4; Design for Reliability of Telecommunication Systems and Services. 40(1991)4.Google Scholar
  54. [2.53]
    Kossow A. and Preuss W., “Failure probability of strict consecutive-k-out-of-n: F systems”. IEEE Trans. Rel., 36(1987)5, pp. 551–553; “Reliability of consecutive -k-outof-n: F systems with nonidentical component reliability”. IEEE Trans. Rel., 38(1989), pp. 229–233; “Mean time to failure for a linear-consecutive-k-out-of-n: F systems”. IEEE Trans. Rel., 40(1991)3, pp. 271–272.Google Scholar
  55. [2.54]
    Rai S. and Agrawal D.P. (Ed.), Advances in Distributed Systems Reliability. 1990; Distributed Computing Network Reliability. 1990, Piscataway, NJ: IEEE Press.Google Scholar
  56. [2.55]
    Råde L., “Reliability survival equivalence”. Microel. and Rel., 33(1993)6, pp. 881–894.Google Scholar
  57. [2.56]
    Reinschke K. and Usakov IA., Zuverlassigkeitstrukturen: Modellbildung-Modellauswertung. Munich: Oldenbourg, 1988.Google Scholar
  58. [2.57]
    Sanso B. and Soumis F., “Communication and transportation network reliability using routing models”. IEEE Trans. Rel., 40(1991)1, pp. 29–38.Google Scholar
  59. [2.58]
    Schneeweiss W., Zuverlassigkeits-Systemtheorie. Köln: Datakontext, 1980; Boolean Functions with Engineering Applications and Computer Programs. Berlin: Springer, 1989; “Usefulness of MTTF of s-independent case in other cases”. IEEE Trans. Rel., 41(1992)2, pp. 196–200.Google Scholar
  60. [2.59]
    Serra A. and Barlow RE., Theory of Reliability. Amsterdam: North-Holland, 1986.MATHGoogle Scholar
  61. [2.60]
    Störmer H., Mathematische Theorie der Zuverlässigkeit. Munich: Oldenbourg, 2nd Ed., 1983.Google Scholar
  62. [2.61]
    Bavuso S.J. and Martensen AL., “A fourth generation reliability predictor”. Proc. Ann. Rel. and Maint. Symp., 1988, pp. 11–16.Google Scholar
  63. [2.62]
    Bernet R., Rechnergestiützte Berechnung der vorausgesagtenn Zuverlässigkeit. Dipl. Thesis, ETH Zurich: Reliability Lab., 1987: “CARP - a program to calculate the predicted reliability”. 6th Int. Conf. on Rel. and Maint., Strasbourg 1988, pp. 306–310; CARP (ComputerAided Reliability Prediction): V3 User Manual. Report S6, ETH Zurich: Reliability Lab., 1991; Modellierung reparierbarer Systeme durch Markoff- und Semiregenerative Prozesse. Ph.D.Thesis 9682, ETH Zurich: 1992.Google Scholar
  64. [2.63]
    Bowles J.B. and Klein L.A., “Comparison of commercial reliability-prediction programs”. Proc. Ann. Re. and Maint. Symp., 1990, pp. 450–455.Google Scholar
  65. [2.64]
    Brandmaier M., CARAP (Computer Aided Reliability and Availability Prediction): Computer Aided Reliability and Availability Prediction for Complex Equipment and Systems: A User Friendly Tool. ETH Zurich: Reliability Lab. (Report S10), 1993.Google Scholar
  66. [2.65]
    Fleming J.L., “RELCOMP - A computer program for calculating system reliability and MTBF”. IEEE Trans. Rel., 20(1971)3, pp. 102–107.Google Scholar
  67. [2.66]
    Frey H., Computerorientierte Methodik der Systemzuverlässigkeits- und Sicherheitsanalyse. Ph.D.Thesis 5244, ETH Zurich: 1973.Google Scholar
  68. [2.67]
    Hansen W.A., Edson B.N., and Laster P.C., “Reliability, availability, and maintainability expect systems (RAMES)”. Proc. Ann. Rel. and Maint. Symp., 1992, pp. 478–482.Google Scholar
  69. [2.68]
    Held M., and Brandmaier M., CARAP (Computer Aided Reliability and Availability Prediction): VI User Manual. ETH Zurich: Reliability Lab. (Report S12), 1993.Google Scholar
  70. [2.69]
    Johnson A.M. and Malek M., “Survey of software tools for evaluating reliability, availability, and serviceability”. ACM Comp. Surveys, 20(1988)4, pp. 227–269.Google Scholar
  71. [2.70]
    Johnson S.C. and Butler R.W., “Automated generation of reliability models”. Proc. Ann. Rel. and Maint. Symp., 1988, pp. 17–22.Google Scholar
  72. [2.71]
    Klion J. and Lyne G.W., “RADC Oracle”. Proc. Ann. Rel. and Maint. Symp., 1981. pp. 81–84.Google Scholar
  73. [2.72]
    Locks M.O., “Recent developments in computing of system-reliability”. IEEE Trans. Rel., 34(1985)5, pp. 425–436.Google Scholar
  74. [2.73]
    Magee D. and Refsum A., “RESIN, a desktop-computer program for finding cut-sets”. IEEE Trans. Rel., 30(1981)5, pp. 407–410.Google Scholar
  75. [2.74]
    NASA, CR-1127: Practical Reliability (Vol. 2, Computation). 1968.Google Scholar
  76. [2.75]
    AFCIQ: Guide d’ Evaluation de la Fiabilité en Mécanique. 1981.Google Scholar
  77. [2.76]
    Barer RD., Why Metals Fail. New York: Gordon and Breach, 3rd Ed. 1974.Google Scholar
  78. [2.77]
    Bertsche B. and Lechner G., Zuverlassigkeit imMaschinenbau. Berlin: Springer, 1990.CrossRefGoogle Scholar
  79. [2.78]
    Bocchi W.J., “Predicting mechanical reliability”. Proc. Ann. Rel. and Maint. Symp., 1981, pp. 33–37.Google Scholar
  80. [2.79]
    Bogdanoff J.L. and Kozin F., Probabilistic Models for Cumulative Damage. New York: Wiley, 1985.Google Scholar
  81. [2.80]
    Carter ADS., Mechanical Reliability. London: Macmillan, 2nd Ed., 1986.Google Scholar
  82. [2.81]
    Collins J.A., Failure of Materials in Mechanical Design. New York: Wiley, 1981.Google Scholar
  83. [2.82]
    Dasgupta A. et. al., “Failure mechanism models”. IEEE Trans. Rel., 40(1991), pp. 531–536, 41(1992), pp.149–155, 168–174, 328–335, 489–495, and 42(1993), pp. 339–353.Google Scholar
  84. [2.83]
    Engelmaier W., Surface Mount Solder Joint Long-Term Reliability: Design, Testing, Prediction. Lincolnwood, IL: IPC (Tech. Paper 797), 1989; Reliable Surface Mount Solder Attachements Through Design and Quality Manufacturing. ETH Zurich: Reliability Lab., 1993 (Report L21), presented at the ETH/IEEE Workshop on SMT, 1992.Google Scholar
  85. [2.84]
    Hangen E.B., Probabilistic Mechanical Design. New York: Wiley, 1980.Google Scholar
  86. [2.85]
    Henley E.J., and Kumamoto H., Probabilistic Risk Assessment: Reliability Engineering, Design, and Analysis. Piscataway, NJ: IEEE Press, 1992.Google Scholar
  87. [2.86]
    Hertzberg R.W., Deformation and Fracture Mechanics of Engineering Materials. New York: Wiley, 2nd Ed. 1983.Google Scholar
  88. [2.87]
    Hutchings F.R. and Unterweiser P.M. (Ed), Failure Analysis. Metals Park, OH: Amer. Soc. for Metals, 1981.Google Scholar
  89. [2.88]
    Kagur K.C. and Lamberson L., Reliability in Engineering Design. New York: Wiley, 1977.Google Scholar
  90. [2.89]
    Kececioglu D., Reliability Engineering Handbook (Vol. 1 and Vol. 2). Englewood Cliffs, NJ: Prentice-Hall, 1991.Google Scholar
  91. [2.90]
    Koller R., Konstruktionslehre für den Maschinenbau. Berlin: Springer, 2nd Ed. 1985.Google Scholar
  92. [2.91]
    Kutz M. (Ed.), Mechanical Engineers’ Handbook. New York: Wiley, 1986.Google Scholar
  93. [2.92]
    Manson S.S., Thermal Stress and Low-Cycle Fatigue. Malabar, FL: Krieger, 1981.Google Scholar
  94. [2.93]
    Nelson J.J. et al., “Reliability models for mechanical equipment”. Proc. Ann. Rel. and Maint. Symp., 1989, pp. 146–153.Google Scholar
  95. [2.94]
    RADC, Mechanical Applications in Reliability Engineering. 1993Google Scholar
  96. [2.95]
    Smith C.O., “Manufacturing/design defects”. Amer. Soc. Mech. Eng., 1986, pp. 1–6.Google Scholar
  97. [2.96]
    Thaft-Christensen P., Baker, Structural Reliability Theory and its Applications. Berlin: Springer, 1982.CrossRefGoogle Scholar
  98. [2.97]
    Bednarz S.M. and Mariott DL., “Efficient analysis for FMEA”. Proc. Ann. Rel. and Maint. Symp., 1988, pp. 416–421.Google Scholar
  99. [2.98]
    Collins J.A., Hagan B.T., and Bratt H.M., “Helicopter failure modes and corrective actions”. Proc. Ann. Rel. and Maint. Symp., 1975, pp. 504–510.Google Scholar
  100. [2.99]
    DIN 25419: Storfallablaufanalyse (T I-T2). 1977–79; 25424: Fehlerbaumanalyse. 1981; 25448: Ausfalleffektanalyse. 1980; 31000: Allgemeine Leitsatze für das sicherheitsgerechte Gestalien technischer Erzeugnisse. 1979.Google Scholar
  101. [2.100]
    Feo T., “PAFT F77: Program for the analysis of fault trees”. IEEE Trans. Rel., 35 (1986)1, pp. 48–50.Google Scholar
  102. [2.101]
    IEC 812: Analysis Techniques for System Reliability-Procedure for FMEA. 1985; 1025: Fault Tree Analysis (FTA). 1990.Google Scholar
  103. [2.102]
    Hall F.M., Paul R.A., and Snow WE., “Hardware/Software FMECA”. Proc. Ann. Rel. and Maint. Symp., 1983, pp. 320–327.Google Scholar
  104. [2.103]
    IEEE, Special issue on: Nucl. syst. reliability and safety. IEEE Trans. Rel., 25(1976)4.Google Scholar
  105. [2.104]
    Jackson T., Integration of sneak circuit analysis with FMEA“. Proc. Ann. Rel. and Maint. Symp., 1986, pp. 408–414.Google Scholar
  106. [2.105]
    MIL-STD-1629: Procedures for Performing a Failure Mode, Effects and Criticality Analysis. Ed. A1980.Google Scholar
  107. [2.106]
    RAC, FTA: Fault Tree Analysis Application Guide. 1990. FMD-91: Failure Mode/ Mechanism Distributions. 1991Google Scholar
  108. [2.107]
    Sevcik F., “Current and future concepts in FMEA”. Proc. Ann. Rel. and Maint. Symp., 1981. pp. 414–421.Google Scholar
  109. [2.108]
    Stamenkovic B. and Holovac S., “Failure modes, effects and criticality analysis: The basic concepts and applications”. Proc. Int. Summer Seminar, Dubrovnik: 1987, pp. 21–25.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Alessandro Birolini
    • 1
  1. 1.Reliability LaboratoryETH Zürich/Swiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations