Advertisement

Tomographic Measurement and Reconstruction Techniques

  • D. Mewes
  • C. Herman
  • R. Renz
Chapter

Abstract

In the past decades, an increasing interest in the implementation of tomographic measurement techniques in chemical engineering investigations can be recognized. Tomographic techniques allow the measurement of three-dimensional concentration, temperature and velocity fields in the investigated volume without influencing the physical process. Especially the analysis of unsteady phenomena is of interest. In the paper, the different measurement techniques used in tomography are described. The mathematical methods implemented in the reconstruction of the measured physical properties are reviewed and the quality of the reconstruction is critically evaluated. Numerous applications of tomographic techniques are discussed.

Keywords

Void Fraction Reconstruction Technique Field Function Field Parameter Grid Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [210]
    Vogg, H.: Strahlendiagnostik - in der Medizin ja, für die Verfahrenstechnik nein? Ein kritischer Vergleich. Chem.-Ing.-Tech. 55,6 (1983) 467–474Google Scholar
  2. [211]
    Duwe, R.; Jansen, P.: Computer-Tomographie an Fässern mit radioaktivem Inhalt. Kernforschungsanlage Jülich GmbH (1989) Jül-Spez 498Google Scholar
  3. [212]
    Haarde, W.: Das Vermischen mit Hilfe von Flüssigkeitsstrahlen. Dissertation, Universität Hannover 1989Google Scholar
  4. [213]
    Pfister, G.; Maier, P.; Hehn, G.; Kegriss, H.; Stier, G.: Neutronentomografie zur zerstörungsfreien Werkstoffprüfung. Atomenergie, Kernenergie 47,4 (1985) 242–245Google Scholar
  5. [214]
    Heyser, R.C.; Le Croisette, D.H.: Transmission ultrasonography. Proc. Ultrasonics Symp. IEEE Cat.No. 73 (1973)Google Scholar
  6. [215]
    Wolf, J.: Ein Meßverfahren zur Untersuchung von Blasensäulenreaktoren: Die Ultraschall-Tomografie. VDI-Fortschrittsbericht Nr.166 Düsseldorf (1988)Google Scholar
  7. [216]
    Wernike, G.; Osten, W.: Holographische Interferometrie. Weinheim: Physik Verlag 1982Google Scholar
  8. [217]
    Mayinger, F.; Panknin, W.: Holography in heat and mass transfer. Proc. 5th Int. Heat Transfer Conf. Tokyo (1974)Google Scholar
  9. [218]
    Panknin, W.: Einige Techniken und Anwendungen der holografischen Durchlicht-Interferometrie. Chemie Technik SD 3 (1974) 219–225Google Scholar
  10. [219]
    Lübbe, D.: Ein Meßverfahren für instationäre, dreidimensionale Verteilungen und seine Anwendung auf Mischvorgänge. Dissertation Universität Hannover 1982Google Scholar
  11. [220]
    Ostendorf, W.: Einsatz der optischen Tomographie zum Messen von Temperaturfeldern in Rührgefäßen. Dissertation Universität Hannover 1987Google Scholar
  12. [221]
    Friederich, M.: Dissipation in gerührten nicht-newtonschen Flüssigkeiten.Dissertation Universität Hannover 1990Google Scholar
  13. [222]
    Hildebrand, B.P.; Brasden, B.B.: An Introduction to Acoustical Holography. London: Adam Hilger Ltd. 1972Google Scholar
  14. [223]
    Greenleaf, J.F.; Johnson, S.A.; Samayoa, W.F.; Duck, F.A.: Algebraic reconstruction of spatial distributions of acoustic velocities in tissue from their time-of-flight profiles. Plenum Press (1974) 71–90Google Scholar
  15. [224]
    Uchiyama, H.; Nakajima, M.; Yuta, S.: Measurement of flame temperature distribution by IR emission computed tomography. Applied Optics 24/23 (1985) 4111–4116Google Scholar
  16. [225]
    Ramm, B.; Semmler, W.; Lamiado, M.: Einführung in die MR-Tomographie. Stuttgart: Ferdinand Enke Verlag 1986Google Scholar
  17. [226]
    Delin, J.: Entwicklungen in der Kernspintomografie. Vision 8z Voice Magazine 3/1 (1989) 110–111Google Scholar
  18. [227]
    Bennet, K.E.; Faris, G.W.; Byer, ß..L.: Experimental optical fan beam tomography. Applied Optics 23/16 (1984) 2678–2685Google Scholar
  19. [228]
    Kak, A.C.; Slaney, M.: Principles of Computerized Tomographic Imaging. New York: IEEE Press 1988zbMATHGoogle Scholar
  20. [229]
    Keil, P.: Fortschritte auf dem Gebiet der Röntgen—Computer—Tomografie. Phys. Bl. 39/1 (1983) 2–8Google Scholar
  21. [230]
    Herman, G.T.: Image Reconstruction from Projections The Fundamentals of Computerized Tomography. New York: Academic Press 1980zbMATHGoogle Scholar
  22. [233]
    Herman, G.T.: Image Reconstruction from Projections Implementation and Applications. Berlin: Springer Verlag 1979CrossRefGoogle Scholar
  23. [232]
    Gordon, R.; Herman, G.T.: Three—dimensional reconstruction from projections: A review of algorithms. Int. Rev. Cytol. 38 (1974) 111–151Google Scholar
  24. [233]
    Rangayyan, R.; Dhawan, A.P.; Gordon, R.: Algorithms for limited—view computed tomography: An annotated bibliography and a challenge. Applied Optics 24/23 (1985) 3950–3957Google Scholar
  25. [234]
    Hesselink, L.: Optical tomography. Handbook of flow visualisation Chapter 20. New York: W.-J. Yang Hemispere Publishing Corporation 1989Google Scholar
  26. [235]
    Hunter, J.C.; Collins, M.W.: Three—dimensional refractive index field reconstruction from holographic interferograms. Int. J. Optoelectronics 4/2 (1989) 95–132Google Scholar
  27. [236]
    Mewes, D.; Ostendorf, W.; Friederich, M.; Haarde, W.: Tomographic measurement techniques for process engineering studies. Ed. N.P. Cheremisinoff: Handbook of Heat and Mass Transfer Houston: Gulf Publishing Company 1989Google Scholar
  28. [237]
    Mewes, D.; Ostendorf, W.: Einsatz tomografischer Meßverfahren für verfahrenstechnische Untersuchungen. Chem. Ing. Tech. 55/11 (1983) 856–864Google Scholar
  29. [238]
    Herman, G.T.; Lent, A.: Iterative reconstruction algorithms. Comput. Biol. Med. 6 (1976) 273–294CrossRefGoogle Scholar
  30. [239]
    Censor, Y.: Finite series—expansion reconstruction methods. Proceedings of the IDEE 71/3 (1983) 409–419Google Scholar
  31. [240]
    for three—dimensional electron microscopy and X—ray photography. J. Theor. Biol. 29 (1970) 471–481Google Scholar
  32. [241]
    Herman, G.T.: ART: Mathematics and applications. J. Theor. Biol. 42 (1973) 1–32Google Scholar
  33. [242]Gordon, R.: A tutorial on ART. IEEE Trans. Nucl. Science 71 (1974)
    Gilbert, P.F.C.: Iterative methods for the three—dimensional reconstruction of an object from projections. J. Theor. Biol. 36 /1 (1972) 105–117CrossRefGoogle Scholar
  34. [244]
    Anderson, A.H.; Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm. Ultrason. Imaging 6 (1984) 81–94CrossRefGoogle Scholar
  35. [245]
    Buonocore, M.H.; Brody, W.R.; Macovski, A.: A natural pixel decomposition for two—dimensional image reconstruction. IEEE Trans. Biomed. Eng. 28 /2 (1981) 69–78CrossRefGoogle Scholar
  36. [246]
    Garnero, C.; Hugorin, J.; Beaucondrey, N.: Limited—angle tomographic imaging using a constrained natural—pixel decomposition. Optica Acta 33 (1985) 659–671Google Scholar
  37. [247]
    Cha, D.G.; Cha, S.S.: AIAA 21st Fluid Dynamics, Plasma Dynamics and Laser Conference. AIAA Paper No.90 Seattle (1990) 1517Google Scholar
  38. [248]
    Sweeney, D.W.: Interferometric measurement of three—dimensional temperature fields. Dissertation University of Michigan 1972Google Scholar
  39. [249]
    Goodman, J.W.: Introduction to Fourier Optics New York: McGraw-Hill 1968Google Scholar
  40. [250]
    Lewitt, R.M.: Reconstruction algorithms: Transform methods. Proceedings of the IEEE 71/3 (1983) 390–408Google Scholar
  41. [251]
    Smith, K.T.; Kleinert, F.: Mathematical foundations of computed tomography. Applied Optics 24/23 (1985) 4000–4012Google Scholar
  42. [252]
    Bracewell, R.: The Fourier Transform and its Applications. New York: McGraw-Hill Book Company 1965zbMATHGoogle Scholar
  43. [253]
    Achilles, D.: Die Fourier-Transformation in der Signalverarbeitung. Berlin: Springer Verlag 1978zbMATHGoogle Scholar
  44. [254]
    Tuffs, A.: Neue Techniken für den Blick in den Körper. AGF-Jahresheft (1990)Google Scholar
  45. [255]
    Rowley, P.D.: Quantitative interpretation of three-dimensional weakly refractive phase objects using holographic interferometry. J. Opt. Soc. Am. 59/11 (1969) 1496–1498Google Scholar
  46. [256]
    Junginger, H.-G.; v. Haeringen, W.: Calculation of three-dimensional refractive index field using phase integrals. Optics Communications 5/1 (1972) 1–4Google Scholar
  47. [257]
    Sato, T.; Saski, K.; Nakamura, Y.; Linzer, M.; Norton, S.J.: Tomographic image reconstruction from limited projections using iterative revisions in image and transform spaces. Appl. Optics 10/3 (1981) 395–399Google Scholar
  48. [258]
    Sato, T.; Saski, K.; Nakamura, Y.; Linzer, M.; Norton, S.J.: Tomographic image reconstruction from limited projections using coherent optical feedback. Appl. Optics 20/17 (1981) 3073–3076Google Scholar
  49. [259]
    Emmerman, P..I.; Goulard, R.; Santoro, R.J.: Multiangular absorption diag- nostics of a turbulent argon-methane jet. J. Energy 4/2 (1980) 70–77Google Scholar
  50. [260]
    Santoro, R.J.; Semerjian, H.G.; Emmerman, P.J.: Optical tomography for flow fields diagnostics. Int. J. Heat Mass Transfer 24/7 (1981) 1139–1150Google Scholar
  51. [261]
    Snyder, R.; Hesselink, L.: Optical tomography for flow visualisation of the density field around a revolving helicopter rotor blade. Applied Optics 23/20 (1984) 3650–3657Google Scholar
  52. [262]
    Snyder, R.; Hesselink, L.: High speed optical tomography for flow visualisation. Applied Optics 24/23 (1985) 4046–4051Google Scholar
  53. [263]
    Faris, G.W.; Byer, R.L.: Beam-deflection optical tomography. Optics Letters 12/2 (1987) 72–74Google Scholar
  54. [264]
    Faris, G.W.; Byer, R.L.: Beam-deflection optical tomography of a flame. Optics Letters 12,3 (1987) 155–157Google Scholar
  55. [265]
    Radon, J.: Uber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften Leipzig Math-Phys. Kl. 69 (1917) 262–267Google Scholar
  56. [266]
    Hauck, A.: Ultrasonic Tomography for the Non-Intrusive Measurement of Flow-Velocity-Fields. VDI Berichte Nr. 768 (1989)Google Scholar
  57. [267]
    Liu, T.C.; Merzkirch, W.; Obeste-Lehn, K.: Optical tomography applied to speckle photographic measurement of asymmetric flows with variable density. Experiments in fluids 7 (1989) 157–163Google Scholar
  58. [268]
    Cha, S.S.; Sun, H.: Interferometric tomography of continuous fields with incomplete projections. Optics Letters 14/6 (1989) 299–301Google Scholar
  59. [269]
    Inouye, T.: Image reconstruction with limited angle projection data. IEEE Trans. Nucl. Sci. 26/2 (1979) 2666–2669Google Scholar
  60. [270]
    Herman, G.; Rowland, S.: Three methods for reconstructing objects from X—rays: a comparative study. Comput. Graphics Image Processing 2 (1973) 151–178Google Scholar
  61. [271]
    in der zerstörungsfreien Materialprüfung. Materialprüf. 22 /5 (1980) 214–217Google Scholar
  62. [272]
    Webb, A.G.; Jezzard, P.; Hall, L.D.; Ng, S.: Detection of inhomogenities in rubber samples using n.m.r. imaging. Polymer Communications 30/12 (1989) 363–366Google Scholar
  63. [273]
    VDI: Große Schmiedteile mit Echo—Tomographie untersucht. VDI—Nachrichten 32/ 12 (1989)Google Scholar
  64. [274]
    Onoe, M.; Tsao, J.W.; Yamada, H.; Kogure, H.; Kawamura, H.; Yoshimatsu, M.: Computed tomography for measuring annual rings of a live tree. Proceedings of the IEEE 71/7 (1983) 907–908Google Scholar
  65. [275]
    Wang, S.Y.; Huang, Y.B.; Pereira, V.; Gryte, C.G.: Application of computed tomography to oil recovery from porous media. Applied Optics 24/23 (1985) 4021–4027Google Scholar
  66. [276]
    Persson, S.; Östman, E.: Use of computed tomography in nondestructive testing of polymeric materials. Applied Optics 24/23 (1985) 4095–4104Google Scholar
  67. [277]
    Michael, Y.C.; Yang, K.T.: Recent developments in axial tomography for heat transfer and fluid flow studies. J. of Experimental Thermal and Fluid Science 3 (1991) 5Google Scholar
  68. [278]
    Proceedings of Physics and Engineering in Computerized Tomography. Newport Beach California. IEEE Transactions Nuclear Science 26/2 (1979) 26613636Google Scholar
  69. [279]
    Proceedings of Computerized Tomography. IEEE 71 (1983) 291–435Google Scholar
  70. [280]
    Proceedings of Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging. Canada: Hecla Island 1984Google Scholar
  71. [281]
    Watt, D.W.: Turbulent flow visualization by interferometric integral imaging and computed tomography. Experiments in Fluids 8 (1990) 301–311Google Scholar
  72. [282]
    Faris, G.W.; Byer, R.L.: Three—dimensional beam deflection optical tomography of a supersonic jet. Optics Letters 27/24 (1988) 5202–5212Google Scholar
  73. [283]
    Blinkov, G.N.; Fomin, N.A.; Rolin, M.N.; Solukhin, R.I.; Vitkin, D.E.; Yadrevskaya, N.L.: Speckle tomography of a gas flame. Experiments in Fluids 8 (1989) 72–76Google Scholar
  74. [284]
    Merzkirch, W.: Flow Visualization. Academic Press Inc. 1987Google Scholar
  75. [285]
    Green, S.F.: Acoustic temperature and velocity measurement in combustion gases. Proc. of the 8th Int. Heat Transfer Conference. San Francisco 1986Google Scholar
  76. [286]
    Snyder, R., Hesselink, L.: Measurement of mixing fluid flows with optical tomography. Optics Letters 13,2 (1988) 87–89Google Scholar
  77. [287]
    Wolfe, C. D.; Byer, R. L.: Model studies of laser absorption computed tomography for remote air pollution measurement. Applied Optics 21,7 (1982) 1182–1178Google Scholar
  78. [288]
    Willms, I.; Siemund, B.; Lorbeer, G.: Opto-computer-tomographical method for measuring smoke density distributions. Fire Safety Journal 6 (1983) 203208Google Scholar
  79. [289]
    Bahl, S.; Liburdy, J.A.: Measurement of local convective heat transfer coefficients using three-dimensional interferometry. Int. J. Heat Mass Transfer 45.4/5 (1990) 949–960Google Scholar
  80. [290]
    Mayinger, F.; Lübbe, D.: Ein tomographisches Meßverfahren und seine Anwendung auf Mischvorgänge und Stoffaustausch. Wärme-und Stoffübertragung 18 (1984) 49–59Google Scholar
  81. [291]
    Kulacki, F.A.; Schlosser, P.A.; DeVuono, A.C.; Munshi, P.: A preliminary study of the application of reconstruction tomography to void fraction measurements in two-phase flow. Proc. ANS/ASME/NRC First Topical Meeting on Nuclear Reactor Thermal-Hydraulics New York: NUREG/CP-0014 (1980) 904–922Google Scholar
  82. [292]
    De Vuono, A.C.; Schlosser, P.A.; Kulicke, F.A.; Munshi, P.: Design of an isotopic CT scanner for two-phase flow measurements. IEEE Transactions on Nuclear Society 27/1 (1980) 814–820Google Scholar
  83. [293]
    Fincke, J.R.; Cheever, G.L.; Fackrell, L.J.; Scown, V.S.; Thornton, V.B.; Ward, M.B.: The development of reconstructive tomography for the measurement of density distribution in large pipe steady-state multiphase flows. NUREG/CP-0015 Vol. 2, 1980Google Scholar
  84. [294]
    Reimann, J.: Developments in Two-Phase Mass Flow Rate Instrumentation. NATO Adv. Res. Workshop on “Advances in Two-Phase Flow and Heat Transfer”, Spitzingsee, Germany 1982Google Scholar
  85. [295]
    MacCuaig, J.P.C.; Seville, J.P.K.; Gilbot, W.B.; Clift, R.: Anwendung der Gammastrahlen-Tomographie auf Fließbetten. Applied Optics 24/23 (1985) 4083–4085Google Scholar
  86. [296]
    Vinegar, H.J.; Wellington, S.L.: Tomographie imaging of three-phase flow experiments. Rev. Sci. Instrum 58/1 (1987) 96–107Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • D. Mewes
  • C. Herman
  • R. Renz

There are no affiliations available

Personalised recommendations