Skip to main content

Tomographic Measurement and Reconstruction Techniques

  • Chapter
Optical Measurements

Abstract

In the past decades, an increasing interest in the implementation of tomographic measurement techniques in chemical engineering investigations can be recognized. Tomographic techniques allow the measurement of three-dimensional concentration, temperature and velocity fields in the investigated volume without influencing the physical process. Especially the analysis of unsteady phenomena is of interest. In the paper, the different measurement techniques used in tomography are described. The mathematical methods implemented in the reconstruction of the measured physical properties are reviewed and the quality of the reconstruction is critically evaluated. Numerous applications of tomographic techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vogg, H.: Strahlendiagnostik - in der Medizin ja, für die Verfahrenstechnik nein? Ein kritischer Vergleich. Chem.-Ing.-Tech. 55,6 (1983) 467–474

    Google Scholar 

  2. Duwe, R.; Jansen, P.: Computer-Tomographie an Fässern mit radioaktivem Inhalt. Kernforschungsanlage Jülich GmbH (1989) Jül-Spez 498

    Google Scholar 

  3. Haarde, W.: Das Vermischen mit Hilfe von Flüssigkeitsstrahlen. Dissertation, Universität Hannover 1989

    Google Scholar 

  4. Pfister, G.; Maier, P.; Hehn, G.; Kegriss, H.; Stier, G.: Neutronentomografie zur zerstörungsfreien Werkstoffprüfung. Atomenergie, Kernenergie 47,4 (1985) 242–245

    Google Scholar 

  5. Heyser, R.C.; Le Croisette, D.H.: Transmission ultrasonography. Proc. Ultrasonics Symp. IEEE Cat.No. 73 (1973)

    Google Scholar 

  6. Wolf, J.: Ein Meßverfahren zur Untersuchung von Blasensäulenreaktoren: Die Ultraschall-Tomografie. VDI-Fortschrittsbericht Nr.166 Düsseldorf (1988)

    Google Scholar 

  7. Wernike, G.; Osten, W.: Holographische Interferometrie. Weinheim: Physik Verlag 1982

    Google Scholar 

  8. Mayinger, F.; Panknin, W.: Holography in heat and mass transfer. Proc. 5th Int. Heat Transfer Conf. Tokyo (1974)

    Google Scholar 

  9. Panknin, W.: Einige Techniken und Anwendungen der holografischen Durchlicht-Interferometrie. Chemie Technik SD 3 (1974) 219–225

    Google Scholar 

  10. Lübbe, D.: Ein Meßverfahren für instationäre, dreidimensionale Verteilungen und seine Anwendung auf Mischvorgänge. Dissertation Universität Hannover 1982

    Google Scholar 

  11. Ostendorf, W.: Einsatz der optischen Tomographie zum Messen von Temperaturfeldern in Rührgefäßen. Dissertation Universität Hannover 1987

    Google Scholar 

  12. Friederich, M.: Dissipation in gerührten nicht-newtonschen Flüssigkeiten.Dissertation Universität Hannover 1990

    Google Scholar 

  13. Hildebrand, B.P.; Brasden, B.B.: An Introduction to Acoustical Holography. London: Adam Hilger Ltd. 1972

    Google Scholar 

  14. Greenleaf, J.F.; Johnson, S.A.; Samayoa, W.F.; Duck, F.A.: Algebraic reconstruction of spatial distributions of acoustic velocities in tissue from their time-of-flight profiles. Plenum Press (1974) 71–90

    Google Scholar 

  15. Uchiyama, H.; Nakajima, M.; Yuta, S.: Measurement of flame temperature distribution by IR emission computed tomography. Applied Optics 24/23 (1985) 4111–4116

    Google Scholar 

  16. Ramm, B.; Semmler, W.; Lamiado, M.: Einführung in die MR-Tomographie. Stuttgart: Ferdinand Enke Verlag 1986

    Google Scholar 

  17. Delin, J.: Entwicklungen in der Kernspintomografie. Vision 8z Voice Magazine 3/1 (1989) 110–111

    Google Scholar 

  18. Bennet, K.E.; Faris, G.W.; Byer, ß..L.: Experimental optical fan beam tomography. Applied Optics 23/16 (1984) 2678–2685

    Google Scholar 

  19. Kak, A.C.; Slaney, M.: Principles of Computerized Tomographic Imaging. New York: IEEE Press 1988

    MATH  Google Scholar 

  20. Keil, P.: Fortschritte auf dem Gebiet der Röntgen—Computer—Tomografie. Phys. Bl. 39/1 (1983) 2–8

    Google Scholar 

  21. Herman, G.T.: Image Reconstruction from Projections The Fundamentals of Computerized Tomography. New York: Academic Press 1980

    MATH  Google Scholar 

  22. Herman, G.T.: Image Reconstruction from Projections Implementation and Applications. Berlin: Springer Verlag 1979

    Book  Google Scholar 

  23. Gordon, R.; Herman, G.T.: Three—dimensional reconstruction from projections: A review of algorithms. Int. Rev. Cytol. 38 (1974) 111–151

    Google Scholar 

  24. Rangayyan, R.; Dhawan, A.P.; Gordon, R.: Algorithms for limited—view computed tomography: An annotated bibliography and a challenge. Applied Optics 24/23 (1985) 3950–3957

    Google Scholar 

  25. Hesselink, L.: Optical tomography. Handbook of flow visualisation Chapter 20. New York: W.-J. Yang Hemispere Publishing Corporation 1989

    Google Scholar 

  26. Hunter, J.C.; Collins, M.W.: Three—dimensional refractive index field reconstruction from holographic interferograms. Int. J. Optoelectronics 4/2 (1989) 95–132

    Google Scholar 

  27. Mewes, D.; Ostendorf, W.; Friederich, M.; Haarde, W.: Tomographic measurement techniques for process engineering studies. Ed. N.P. Cheremisinoff: Handbook of Heat and Mass Transfer Houston: Gulf Publishing Company 1989

    Google Scholar 

  28. Mewes, D.; Ostendorf, W.: Einsatz tomografischer Meßverfahren für verfahrenstechnische Untersuchungen. Chem. Ing. Tech. 55/11 (1983) 856–864

    Google Scholar 

  29. Herman, G.T.; Lent, A.: Iterative reconstruction algorithms. Comput. Biol. Med. 6 (1976) 273–294

    Article  Google Scholar 

  30. Censor, Y.: Finite series—expansion reconstruction methods. Proceedings of the IDEE 71/3 (1983) 409–419

    Google Scholar 

  31. for three—dimensional electron microscopy and X—ray photography. J. Theor. Biol. 29 (1970) 471–481

    Google Scholar 

  32. Herman, G.T.: ART: Mathematics and applications. J. Theor. Biol. 42 (1973) 1–32

    Google Scholar 

  33. Gilbert, P.F.C.: Iterative methods for the three—dimensional reconstruction of an object from projections. J. Theor. Biol. 36 /1 (1972) 105–117

    Article  Google Scholar 

  34. Anderson, A.H.; Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm. Ultrason. Imaging 6 (1984) 81–94

    Article  Google Scholar 

  35. Buonocore, M.H.; Brody, W.R.; Macovski, A.: A natural pixel decomposition for two—dimensional image reconstruction. IEEE Trans. Biomed. Eng. 28 /2 (1981) 69–78

    Article  Google Scholar 

  36. Garnero, C.; Hugorin, J.; Beaucondrey, N.: Limited—angle tomographic imaging using a constrained natural—pixel decomposition. Optica Acta 33 (1985) 659–671

    Google Scholar 

  37. Cha, D.G.; Cha, S.S.: AIAA 21st Fluid Dynamics, Plasma Dynamics and Laser Conference. AIAA Paper No.90 Seattle (1990) 1517

    Google Scholar 

  38. Sweeney, D.W.: Interferometric measurement of three—dimensional temperature fields. Dissertation University of Michigan 1972

    Google Scholar 

  39. Goodman, J.W.: Introduction to Fourier Optics New York: McGraw-Hill 1968

    Google Scholar 

  40. Lewitt, R.M.: Reconstruction algorithms: Transform methods. Proceedings of the IEEE 71/3 (1983) 390–408

    Google Scholar 

  41. Smith, K.T.; Kleinert, F.: Mathematical foundations of computed tomography. Applied Optics 24/23 (1985) 4000–4012

    Google Scholar 

  42. Bracewell, R.: The Fourier Transform and its Applications. New York: McGraw-Hill Book Company 1965

    MATH  Google Scholar 

  43. Achilles, D.: Die Fourier-Transformation in der Signalverarbeitung. Berlin: Springer Verlag 1978

    MATH  Google Scholar 

  44. Tuffs, A.: Neue Techniken für den Blick in den Körper. AGF-Jahresheft (1990)

    Google Scholar 

  45. Rowley, P.D.: Quantitative interpretation of three-dimensional weakly refractive phase objects using holographic interferometry. J. Opt. Soc. Am. 59/11 (1969) 1496–1498

    Google Scholar 

  46. Junginger, H.-G.; v. Haeringen, W.: Calculation of three-dimensional refractive index field using phase integrals. Optics Communications 5/1 (1972) 1–4

    Google Scholar 

  47. Sato, T.; Saski, K.; Nakamura, Y.; Linzer, M.; Norton, S.J.: Tomographic image reconstruction from limited projections using iterative revisions in image and transform spaces. Appl. Optics 10/3 (1981) 395–399

    Google Scholar 

  48. Sato, T.; Saski, K.; Nakamura, Y.; Linzer, M.; Norton, S.J.: Tomographic image reconstruction from limited projections using coherent optical feedback. Appl. Optics 20/17 (1981) 3073–3076

    Google Scholar 

  49. Emmerman, P..I.; Goulard, R.; Santoro, R.J.: Multiangular absorption diag- nostics of a turbulent argon-methane jet. J. Energy 4/2 (1980) 70–77

    Google Scholar 

  50. Santoro, R.J.; Semerjian, H.G.; Emmerman, P.J.: Optical tomography for flow fields diagnostics. Int. J. Heat Mass Transfer 24/7 (1981) 1139–1150

    Google Scholar 

  51. Snyder, R.; Hesselink, L.: Optical tomography for flow visualisation of the density field around a revolving helicopter rotor blade. Applied Optics 23/20 (1984) 3650–3657

    Google Scholar 

  52. Snyder, R.; Hesselink, L.: High speed optical tomography for flow visualisation. Applied Optics 24/23 (1985) 4046–4051

    Google Scholar 

  53. Faris, G.W.; Byer, R.L.: Beam-deflection optical tomography. Optics Letters 12/2 (1987) 72–74

    Google Scholar 

  54. Faris, G.W.; Byer, R.L.: Beam-deflection optical tomography of a flame. Optics Letters 12,3 (1987) 155–157

    Google Scholar 

  55. Radon, J.: Uber die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte Sächsische Akademie der Wissenschaften Leipzig Math-Phys. Kl. 69 (1917) 262–267

    Google Scholar 

  56. Hauck, A.: Ultrasonic Tomography for the Non-Intrusive Measurement of Flow-Velocity-Fields. VDI Berichte Nr. 768 (1989)

    Google Scholar 

  57. Liu, T.C.; Merzkirch, W.; Obeste-Lehn, K.: Optical tomography applied to speckle photographic measurement of asymmetric flows with variable density. Experiments in fluids 7 (1989) 157–163

    Google Scholar 

  58. Cha, S.S.; Sun, H.: Interferometric tomography of continuous fields with incomplete projections. Optics Letters 14/6 (1989) 299–301

    Google Scholar 

  59. Inouye, T.: Image reconstruction with limited angle projection data. IEEE Trans. Nucl. Sci. 26/2 (1979) 2666–2669

    Google Scholar 

  60. Herman, G.; Rowland, S.: Three methods for reconstructing objects from X—rays: a comparative study. Comput. Graphics Image Processing 2 (1973) 151–178

    Google Scholar 

  61. in der zerstörungsfreien Materialprüfung. Materialprüf. 22 /5 (1980) 214–217

    Google Scholar 

  62. Webb, A.G.; Jezzard, P.; Hall, L.D.; Ng, S.: Detection of inhomogenities in rubber samples using n.m.r. imaging. Polymer Communications 30/12 (1989) 363–366

    Google Scholar 

  63. VDI: Große Schmiedteile mit Echo—Tomographie untersucht. VDI—Nachrichten 32/ 12 (1989)

    Google Scholar 

  64. Onoe, M.; Tsao, J.W.; Yamada, H.; Kogure, H.; Kawamura, H.; Yoshimatsu, M.: Computed tomography for measuring annual rings of a live tree. Proceedings of the IEEE 71/7 (1983) 907–908

    Google Scholar 

  65. Wang, S.Y.; Huang, Y.B.; Pereira, V.; Gryte, C.G.: Application of computed tomography to oil recovery from porous media. Applied Optics 24/23 (1985) 4021–4027

    Google Scholar 

  66. Persson, S.; Östman, E.: Use of computed tomography in nondestructive testing of polymeric materials. Applied Optics 24/23 (1985) 4095–4104

    Google Scholar 

  67. Michael, Y.C.; Yang, K.T.: Recent developments in axial tomography for heat transfer and fluid flow studies. J. of Experimental Thermal and Fluid Science 3 (1991) 5

    Google Scholar 

  68. Proceedings of Physics and Engineering in Computerized Tomography. Newport Beach California. IEEE Transactions Nuclear Science 26/2 (1979) 26613636

    Google Scholar 

  69. Proceedings of Computerized Tomography. IEEE 71 (1983) 291–435

    Google Scholar 

  70. Proceedings of Topical Meeting on Industrial Applications of Computed Tomography and NMR Imaging. Canada: Hecla Island 1984

    Google Scholar 

  71. Watt, D.W.: Turbulent flow visualization by interferometric integral imaging and computed tomography. Experiments in Fluids 8 (1990) 301–311

    Google Scholar 

  72. Faris, G.W.; Byer, R.L.: Three—dimensional beam deflection optical tomography of a supersonic jet. Optics Letters 27/24 (1988) 5202–5212

    Google Scholar 

  73. Blinkov, G.N.; Fomin, N.A.; Rolin, M.N.; Solukhin, R.I.; Vitkin, D.E.; Yadrevskaya, N.L.: Speckle tomography of a gas flame. Experiments in Fluids 8 (1989) 72–76

    Google Scholar 

  74. Merzkirch, W.: Flow Visualization. Academic Press Inc. 1987

    Google Scholar 

  75. Green, S.F.: Acoustic temperature and velocity measurement in combustion gases. Proc. of the 8th Int. Heat Transfer Conference. San Francisco 1986

    Google Scholar 

  76. Snyder, R., Hesselink, L.: Measurement of mixing fluid flows with optical tomography. Optics Letters 13,2 (1988) 87–89

    Google Scholar 

  77. Wolfe, C. D.; Byer, R. L.: Model studies of laser absorption computed tomography for remote air pollution measurement. Applied Optics 21,7 (1982) 1182–1178

    Google Scholar 

  78. Willms, I.; Siemund, B.; Lorbeer, G.: Opto-computer-tomographical method for measuring smoke density distributions. Fire Safety Journal 6 (1983) 203208

    Google Scholar 

  79. Bahl, S.; Liburdy, J.A.: Measurement of local convective heat transfer coefficients using three-dimensional interferometry. Int. J. Heat Mass Transfer 45.4/5 (1990) 949–960

    Google Scholar 

  80. Mayinger, F.; Lübbe, D.: Ein tomographisches Meßverfahren und seine Anwendung auf Mischvorgänge und Stoffaustausch. Wärme-und Stoffübertragung 18 (1984) 49–59

    Google Scholar 

  81. Kulacki, F.A.; Schlosser, P.A.; DeVuono, A.C.; Munshi, P.: A preliminary study of the application of reconstruction tomography to void fraction measurements in two-phase flow. Proc. ANS/ASME/NRC First Topical Meeting on Nuclear Reactor Thermal-Hydraulics New York: NUREG/CP-0014 (1980) 904–922

    Google Scholar 

  82. De Vuono, A.C.; Schlosser, P.A.; Kulicke, F.A.; Munshi, P.: Design of an isotopic CT scanner for two-phase flow measurements. IEEE Transactions on Nuclear Society 27/1 (1980) 814–820

    Google Scholar 

  83. Fincke, J.R.; Cheever, G.L.; Fackrell, L.J.; Scown, V.S.; Thornton, V.B.; Ward, M.B.: The development of reconstructive tomography for the measurement of density distribution in large pipe steady-state multiphase flows. NUREG/CP-0015 Vol. 2, 1980

    Google Scholar 

  84. Reimann, J.: Developments in Two-Phase Mass Flow Rate Instrumentation. NATO Adv. Res. Workshop on “Advances in Two-Phase Flow and Heat Transfer”, Spitzingsee, Germany 1982

    Google Scholar 

  85. MacCuaig, J.P.C.; Seville, J.P.K.; Gilbot, W.B.; Clift, R.: Anwendung der Gammastrahlen-Tomographie auf Fließbetten. Applied Optics 24/23 (1985) 4083–4085

    Google Scholar 

  86. Vinegar, H.J.; Wellington, S.L.: Tomographie imaging of three-phase flow experiments. Rev. Sci. Instrum 58/1 (1987) 96–107

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mewes, D., Herman, C., Renz, R. (1994). Tomographic Measurement and Reconstruction Techniques. In: Mayinger, F. (eds) Optical Measurements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02967-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02967-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02969-5

  • Online ISBN: 978-3-662-02967-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics