Pyrometry and Thermography

  • U. L. Glückert


Around the year 1800 Herschel 1 discovered the infrared spectral region of optical rays. Although the first applications for thermography devices date back to 1900, the field of pyrometrics had however taken a different course of development. An exact definition of the two measurement methods shall not be made at this point; however, the following caracteristics may serve as a means of destinction. Pyrometry is a method which allows measurements of temperature to be recorded from surfaces emitting temperature radiation also known as heat radiation or thermal radiation. These temperature radiations are recorded by a pyrometer, a “radiation thermometer” (pointlike information). If the information obtained, for example, is optically recorded as an entire scene (buildings, operational equipment etc.) and displayed as a “temperature picture” — this is known as thermography. Important in the understanding this phenomena is the difference between infrared photography and similar methods which only record the reflected spectral portion of the optical spectrum (only in the near region of the infrared spectrum) and which generally do not permit any temperature intepretations of the recorded scene to be made.


Temperature Radiation Black Body Fraction Function Radiant Emittance Radiation Thermometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [180]
    Thorne, A.P.: Spectrophysics. 2nd.Edition. London, New York: Chapman and Hall 1988CrossRefGoogle Scholar
  2. [181]
    Shimoda, K.: Line broadening and narrowing effects. In High Resolution Laser spectroscopy ed. by K.Shimoda, Topics in Appl. Phys. Vol. 13. Berlin: Springer 1976Google Scholar
  3. [182]
    Kuhn, H.G.: Atomic Spectra. Longman 1969 Graybeal, J.D.: Molecular Spectroscopy. McGraw-Hill 1988Google Scholar
  4. [183]
    Walther, H.: ed. Laser spectroscopy of atoms and molecules Topics in Appl. Phys. Vol.2. Springer 1976Google Scholar
  5. [184]
    Haken, H.; Wolf, H.C.: Molekülphysik und Quantenchemie und Atomphysik. Springer 1992Google Scholar
  6. [180]
    Barr, E. S.: Historical Survey of the Early Development of the Infrared Spectral Region. Am. J. Phys. vol. 28 (1960) 42–54ADSCrossRefGoogle Scholar
  7. [181]
    Beneking, H.: Praxis des elektronischen Rauschens. Bibliographisches Institut. Mannheim: Hochschultaschenbücher 1971Google Scholar
  8. [182]
    Bergmann - Schaefer: Lehrbuch der Experimentalphysik Vol. III Optik. Herausgeber: Gobrecht H., Berlin, New York: Walter de Gruyter Verlag 1974Google Scholar
  9. [183]
    Bleicher, M.: Halbleiter-Optoelektronik. Uni Taschenbuch 538, Heidelberg: Dr. Alfred Hüthig Verlag 1976Google Scholar
  10. [184]
    Borchert, R.; Jubitz, W.: Infrarottechnik. Berlin: VEB-Verlag Technik 1958 [185]Brügel, W.: Physik und Technik der Ultrarotstrahlung. 2nd. ed. Hannover: C. R. Vincentz-Verlag 1961Google Scholar
  11. [186]
    Haberäcker, P.: Digitale Bildverarbeitung, Grundlagen und Anwendungen. 2nd. ed. München: Hanser Verlag 1987Google Scholar
  12. [187]
    Herrmann, K.; Walther, L.: Wissenspeicher Infrarottechnik. Leipzig: Fachbuchverlag 1990Google Scholar
  13. [188]
    Hudson, D.R. Jr.: Infrared System Engineering. New York: John Wiley and Sons 1969Google Scholar
  14. [189]
    Glückert, U.: Erfassung und Messung von Wärmestrahlung. München: Franzis Verlag 1992Google Scholar
  15. [190]
    Kemp, B.: Modern Infrared Technology. Indianapolis, New York 1962: Photo-tact Publikation. Howard W. Sams + Co, Inc. The Bobbs—Merrill Company Inc. 1962Google Scholar
  16. [191]
    Kruse, P.W. et al.: Elements of Infrared Technology. New York: John Wiley and Sons 1962Google Scholar
  17. [192]
    Kruse, P.; McGlauchlin, L.D.; McQuistan, R.B.: Infrarottechnik — Erzeugung, Übertragung und Empfang infraroter Strahlen. Stuttgart: Verlag W. Kohlhammer 1971Google Scholar
  18. [193]
    Lieneweg, F. (Herausgeber—Mitautor): Handbuch der technischen Temper aturmessung. Brauschweig: Friedrich Vieweg and Sohn Verlags GmbH 1976Google Scholar
  19. [194]
    Pavlidis, T.: Algorithms for Graphics and Image Processing. Berlin: Springer Verlag 1982Google Scholar
  20. [195]
    Siegel, R.; Howell, J. R.: Thermal Radiation Heat Transfer. New York: McGraw—Hill Book Company 1972Google Scholar
  21. [196]
    Siegel, R.; Howell, J. R.; Lohrengel, J.: Herausgeber Grigull, U., Wärmeübertragung durch Strahlung. Teil 1 Grundlagen und Materialeigenschaften. Berlin, Heidelberg: Springer—Verlag 1988CrossRefGoogle Scholar
  22. [197]
    Stahl, K.; Miosga, G.: Infrarottechnik. Heidelberg: Dr. Alfred Hüthig Verlag 1986Google Scholar
  23. [198]
    Toison, La M. (La Toison): Infrarotstrahlung und ihre technische Anwendung. Eindhoven: Philips technische Bibliothek 1964Google Scholar
  24. [199]
    Touloukian, Y. S., et al.: Thermal Radiative Properties. Vol. 7 (Metallic Elements and Alloys), Vol. 8 (Nonmatallic Solids), Vol. 9 (Coatings) New York - Washington: IFI/Plenum 1972Google Scholar
  25. [200]
    Vanzetti, R.: Practical Applications of Infrared Techniques. New York: John Wiley and Sons 1972Google Scholar
  26. [201]
    Weber, H. (und Mitautoren): Thermographie im Bauwesen. Kontakt and Studium, Vol. 81, Grafenau: Expert Verlag (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • U. L. Glückert

There are no affiliations available

Personalised recommendations