Advertisement

Absorption

  • J. Wolfrum
  • V. Ebert

Abstract

One of the oldest techniques of non-intrusive investigation of gaseous media is absorption spectroscopy. There the radiation emitted by a source towards a radiation detector is being absorbed along its way to the detector and this loss is monitored and analysed for its dependence on wavelength. It is widely used for industrial gas analysis because of its simplicity, low cost and effectiveness. Nevertheless it is still an area of active research. Up to the late sixties most spectroscopic data was gained only with the help of broadband sources and monochromators or filters however with the development of lasers, research gained an important tool to improve the quality of the data and, more important, to access completely new areas for the application of non-intrusive optical measurements. These new possibilities are based on the superior properties of laser radiation as there is high spectral resolution, very high spectral power density and directivity of the radiation. Chemical analysis and determination of temperature by optical methods was made possible or could be carried out much more specifically with these features, while signal to noise and sensitivity could be enhanced dramatically.

Keywords

Absorption Line Harmonic Signal Line Strength Line Shape Function Harmonic Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [131]
    Weckers: 1992Google Scholar
  2. [132]
    Van Vleck, J.H.; Weisskopf V.F.: On the shape of collision- broadened lines. Rev. Mod. Phys. 17 (1945) 227–235Google Scholar
  3. [133]
    Herbert, F.: Spectral line profile: A generalized voigt function including col- lisional narrowing. J.Quant.Spectrosc. Radiat. Transfer 14 (1974) 943–951Google Scholar
  4. [134]
    Smith, E.W. et al.: An impact theorie for doppler and pressure broadening I II. JQRST 11 (1971) 1547–1566 and JQRST 11 (1971) 1567–1576Google Scholar
  5. [135]
    Pierluissi, J.H. et al.: Fast calculational algorithm for the Voigt Profile. JQSRT 18 (1977) 555–558Google Scholar
  6. [136]
    Humlicek, J.: An efficient method for evaluation of the complex probability function: the Voigt function and its derivatives. JQRST 21 (1979) 309–313Google Scholar
  7. [137]
    Abramovitz, M.; Stegun, I.A.: Handbook of Mathematical functions. New York: Dover Publications 1970Google Scholar
  8. [138]
    Olivero, J.J.; Longbothum, R.L.: Empirical fits to the Voigt line width: A brief review. JQRST 17 (1977) 233–236Google Scholar
  9. [139]
    Galatry, L.: Simultaneous effect of doppler and foreign gas broadening on spectral lines. Phys. Rev. 122 (1961) 1218–1223Google Scholar
  10. [140]
    Dicke, R.H.: The effect of collisions upon doppler width of spectral lines. Phys. Rev. 89 (1953) 472–473Google Scholar
  11. [141]
    Pickett, H.M.: Effects of velocity averaging on the shapes of absorption lines. J.Chem.Phys. 73 (1980) 6090–6094Google Scholar
  12. [142]
    Pine, A.S.: Collisional narrowing of HF fundamental-band spectral lines by Neon and Argon. J.Mol. Spectr. 82 (1980) 435–448Google Scholar
  13. [143]
    Ouyang, X.; Varghese, P.L.: Reliable and efficent program for fitting Galatry and Voigt profiles to spectral data on multiple lines. Appl.opt.28 (1989) 15381545Google Scholar
  14. [144]
    Varghese, P.L.; Hanson, R.K.: Collisional narrowing effects on spectral lineshapes measered at high resolution. Applied Optics 23,14 (1984) 2376–2385Google Scholar
  15. [145]
    Radcig,A.A.: Reference Data on Atoms, Molecules and Ions. Springer New York Heidelberg 1985Google Scholar
  16. [146]
    Rothman, L.S. et al.: The HINTRAN molecular database: editions of 1991 and 1992. JQSRT 48,5/6,(1992) 469–508Google Scholar
  17. [147]
    Husson, N. et al.: Management and study of spectroscopic information: the GEISA program. JQSRT,48,5/6, (1992) 509–518Google Scholar
  18. [148]
    Poynter, R.L.: Submillimeter, millimeter and microwave spectral line catalogue. JPL Publication 80–23 Rev. 1, Jet Propulsion Laboratory, California Institute of Technology, Pasadena (1986)Google Scholar
  19. [149]
    Reid, J.; Labie, D.: Second harmonic detection with TDL comparison of experiment and theory. Appl Phys. B26 (1981) 203–210Google Scholar
  20. [150]
    -717 + errata in Appl. Optics. 31 (1992) 4927Google Scholar
  21. [151]
    Cassidy, D.T.; Reid, J.: High sensitivity detection of trace gases using sweepintegration and tunable dioded lasers. Appl.Optics. 21 (1982) 2527–2530Google Scholar
  22. [152]
    Cassidy, D.T.: Trace gas detection using 1,3 pm InGaAsP diode laser transmitter modules. Appl. Optics. 27 (1988) 610–614Google Scholar
  23. [153]
    Cova, S.; Longini, A.: An introduction to signals, noise, and measurements, in Analytical Laser Spectroscopy. New York, Wiley Interscience (1979), 412–488Google Scholar
  24. [154]
    Davis, P.B.; Evenson, K.M.: Laser magnetic resonance spectroscopy of gaseous free radicals. Laser Spectroscopy II, ed. by S.Haroche, J.C.Pebay Peyroula, T.W.Hänsch, S.E.Harris, Lecture Notes Phys. Vol.43 Springer (1975) 132Google Scholar
  25. [155]
    Ueda, Y.; Shimoda, K.: Infrared Laser Stark Spectroscopy,in Laser Spectroscopy II, ed. by S.Haroche, J.C.Pebay-Peyroula, T.W.Hänsch, S.E. Harris, Lecture Notes Phys. Vol.43 Springer (1975) 186Google Scholar
  26. [156]
    Zink, L.R. et al.: Stark spectroscopy using far-infrared radiation. J.Opt.Soc.Am.B 4 (1987) 1173–1176ADSCrossRefGoogle Scholar
  27. [157]
    Weber, W.H.; Tanaka, K.; Kanaka, T. (feature eds.): Stark and Zeeman techniques laser spectroscopy. J.Opt.Soc. B4 (1987) 1141–1226Google Scholar
  28. [158]
    Hess, P.; Pelzl, J. (eds.): Photoacoustic and Photothermal Phenomena, Springer Series Opt.Sci. Vol.58 (1988)Google Scholar
  29. [159]
    Gough, T.E.; Scoles, G.: Optothermal infrared spectroscopie. In Laser Spectrocopy V, ed. by A.R.W.McKelar, T.Oka, B.P.Stoichef, Springer Series Opt.Sci. Vol. 30 (1981)Google Scholar
  30. [160]
    Travis, J.C.: Analytical optogalvanic spectroscopy in flames. In Analytical Laser Spectroscopy, ed. by S.Martellucci, A.N.Chester. New York: Plenum (1985) 213Google Scholar
  31. [161]
    Gudeman, C.S.; Saykally, R.J.: Velocity modulation infrared laser spectroscopy of molecular ions. Ann.Rev. Phys.Chem. 35 (1984) 387–418Google Scholar
  32. [162]
    Letokhov, V.S.: Laser Photoionisation Spectroscopy. FL: Academic Orlando1987Google Scholar
  33. [163]
    Hurst, G.S.; Payne, M.G.: Principles and Applications of Resonance Ionisation Spectroscopy. Bristol: Hilger 1988Google Scholar
  34. [164]
    Hack, W.; Wagner, H.G.: Methoden zur Bestimmung von Radikalzuständen und -konzentrationen in der Gasphase. Z.Anal.Chem. 316 (1983) 124–134Google Scholar
  35. [165]
    Wolfrum, J.: Laser in der Reaktionstechnik — Analytik und Manipulation.Chem.-Ing.-Tech. 64 Nr. 3 (1992) 242–252CrossRefGoogle Scholar
  36. [166]
    Harris, T.D.: Laser intracavity enhanced spectroscopy. In Ultrasensitive Laserspectroscopy. New York: D.S.Klinger Academic 1983Google Scholar
  37. [167]
    Levenson, M.D.: Introduction to Nonlinear Laserspectroscopy. New York: Academic 2nd. ed. 1986Google Scholar
  38. [168]
    Letokhov, V.S.; Chebotayev, V.P.: Nonlinear Laser Spectroscopy. Springer Series Opt.Sci. Vol. 4 (1977)Google Scholar
  39. [169]
    Meienburg, W.; Neckel, H.; Wolfrum, J.: In situ measurement of ammonia with a 13CO2 -waveguide laser system. Appl. Phys. B51 (1990) 94–98Google Scholar
  40. [170]
    Neckel, H.; Wolfrum, J.: IR Diode laser measurements of the NH3(v2) band at different temperatures. Appl. Phys. B49 (1989) 85–89CrossRefGoogle Scholar
  41. [171]
    Wahlquvist, H.: Modulation broadening of unsaturated Lorentzian lines. J.Chem.Phys. 35 (1961) 1708–1710Google Scholar
  42. [172]
    Arndt, R.: J. Analytical line shapes for lorentzian signals broadened by modulation. Appl. Phys. 36 (1965) 2522–2524Google Scholar
  43. [173]
    Ritter, K.J.; Wilkerson, T.D.: High-Resolution Spectroscopy of the Oxygen A-Band. J. of Molecular Spectroscopy 121 (1987) 1–19Google Scholar
  44. [174]
    Riedel, W.J.: Infrared gas spectroscopy system using pulsed lead chalcogenided diode lasers. SPIE Proc. 99 (1976) 17–21Google Scholar
  45. [175]
    Grisar, R.; Riedel,W.J.; Ball, D.R.: A hydrogen flouride analyzer using pulsed lead chalcogenided diode lasers. In Monitoring of gaseous Pollutants by Tunable Diode Lasers. eds. (1987) 153–158Google Scholar
  46. [176]
    Sick, V.: Einsatz hochauflösender Laserspektroskopie zur quantitativen Analyse von Gegenstrom-Diffusionsflammen. Dissertation Universität Heidelberg 1992Google Scholar
  47. [177]
    Etzkorn, T.: Laserspektroskopische Bestimmung absoluter CH3- und OH-Radikalkonzentrationen in vorgemischten laminaren CH4/02/NONiederdruckflammen. Diplomarbeit Universität Heidelberg 1992Google Scholar
  48. [178]
    Etzkorn, T.; Muris, S.; Fitzer, J.; Wolfrum, J.: Determination of absolute methyl and hydroxyl-radical concentrations in a low-pressure methan-oxygen flame. Chem.Phys.Lett 208,3/4, (1993) 307–310Google Scholar
  49. [179]
    Möller, W.; Mozhukhin, E.; Wagner, H.G.: High temperature reactions of CH3. Ber. Bunsenges. Phys. Chem. 90 (1986) 854–861Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. Wolfrum
  • V. Ebert

There are no affiliations available

Personalised recommendations