Skip to main content

The Interpretation of Production Tests in Oil Wells

  • Chapter
  • 585 Accesses

Abstract

Data obtained from a production test, if correctly interpreted, represent the most important source of information about the flow geometry and the dynamic properties (effective permeability) of the reservoir rock in the drainage area of the well, in addition to its average pressure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brons F, Marting VE (1961) The effect of restricted fluid entry on well productivity. J Petrol Tech (Feb): 172–174; Trans AIME 222

    Google Scholar 

  2. Chierici GL, Ciucci GM (1969) Water-drive gas reservoirs: influence of pulse-testing on the indetermination range of reserve estimates. J Petrol Tech (Dec): 1521–1527

    Google Scholar 

  3. Chierici GL, Ciucci GM, Pizzi G (1965) Quelques cas de remontées de pression dans des couches hétérogènes avec pénétration partielle. Etude par analyseur électrique. Rev Inst Fr Pétrole (Dec): 1811–1846

    Google Scholar 

  4. Cobb WM, Dowdle WL (1973) A simple method or determining well pressures in closed rectangular reservoirs. J Petrol Tech (Nov): 1305–1306

    Google Scholar 

  5. Dake LP (1978) Fundamentals of reservoir engineering. Elsevier Amsterdam

    Google Scholar 

  6. Earlougher RC Jr (1977) Advances in well testing analysis. Society of Petroleum Engineers, Monograph 5, Dallas

    Google Scholar 

  7. Gringarten AC (1987) Type-curve analysis: what it can and cannot do. J Petrol Tech (Jan): 11–13

    Google Scholar 

  8. Gringarten AC, Ramey HJ Jr, Raghavan R (1974) Unsteady-state pressure distribution created by a well with a single infinite-conductivity vertical fracture, Soc Petrol Eng J (Aug): 347–360; Trans AIME 257

    Google Scholar 

  9. Harris HM (1966) The effect of perforating on well productivity. J Petrol Tech (April): 518–528; Trans AIME 237

    Google Scholar 

  10. Hirasaki GJ (1974) Pulse tests and other early transient pressure analyses for in-situ estimation of vertical premeability. Soc Petrol Eng J (Feb): 75–90; Trans AIME 257

    Google Scholar 

  11. Homer DR (1951) Pressure build up in wells. Proc 3rd World Petrol Congr, vol II, Brill EJ, Leiden pp 503–523

    Google Scholar 

  12. Jacquard P, Jain C (1965) Permeability distribution from field pressure data. Soc Petrol Eng J (Dec): 281–294; Trans AIME 234

    Google Scholar 

  13. Johnson CR, Greenkorn RA, Woods EG (1966) Pulse-testing: a new method for describing reservoir flow properties between wells. J Petrol Tech (Dec): 1599–1604; Trans AIME 237

    Google Scholar 

  14. Kamal M, Brigham WE (1975) Pulse testing response for unequal pulse and shut-in periods. Soc Petrol Eng J (Oct): 399–410; Trans AIME 259

    Google Scholar 

  15. Lee J (1982) Well testing., Society of Petroleum Engineers. Textbook vol 1, Dallas

    Google Scholar 

  16. Lefkovits HC, Hazebroek P, Allen EE, Matthews CS (1961) A study of the behaviour of bounded reservoirs composed of stratified layers. Soc Petrol Eng J (March): 43–58; Trans AIME 222

    Google Scholar 

  17. Matthews CS, Russell DG (1967) Pressure buildup and flow tests in wells. Society of Petroleum Engineers, Monogr, vol 1, Dallas

    Google Scholar 

  18. Matthews CS, Brons F, Hazebroek P (1954) A method for the determination of average pressure in a bounded reservoir. Trans AIME 201: 182–191

    Google Scholar 

  19. McKinley RM (1971) Wellbore transmissibility from afterflow-dominated pressure buildup data. J Petrol Tech (July): 863–872; Trans AIME 251

    Google Scholar 

  20. Miller CC, Dyes AB, Hutchinson CA Jr (1950) Estimation of permeability and reservoir pressure from bottom-hole pressure build-up characterstics. Trans AIME 189: 91–104

    Google Scholar 

  21. Nisle RG (1958) The effect of partial penetration on pressure buildup in oil wells. Trans AIME 213: 85–90

    Google Scholar 

  22. Odeh AS, Jones LG (1965) Pressure drawdown analysis, variable-rate case. J Petrol Tech (Aug): 960–964; Trans AIME 234

    Google Scholar 

  23. Ramey HJ Jr (1970) Short-time well test data interpretation in the presence of skin effect and welbore storage. J Petrol Tech (Jan): 97–104; Trans AIME 249

    Google Scholar 

  24. Ramey HJ Jr, Cobb WM (1971) A general pressure buildup theory for a well in a closed drainage area. Trans AIME 251: 1493–1505

    Google Scholar 

  25. Winestock AG, Colpitts GP (1965) Advances in estimating gas well deliverability. J Can Petrol Tech (July-Sept): 111–119

    Google Scholar 

  26. Yeh NS (1986) Analysis of well test pressure data from a restricted entry well in a layered reservoir. PhD Thesis, University of Tulsa, Oklahoma

    Google Scholar 

  27. Ramey HJ Jr, Agarwal RG, Martin I (1975) Analysis of slug test or DST flow period data. J Can Petrol Tech (July-Sept): 37–42*

    Google Scholar 

  28. Gringarten AC, Bourdet DP, Landel PA, Kniazeff VJ (1979) A comparison between different skin and wellbore storage type-curves for early-time transient analysis. Pap SPE 8205, presented at the 54th Annu Fall Meet of the SPE, Las Vegas, Sept 23–26, 1979

    Google Scholar 

  29. Gringarten AC, Ramey HJ Jr, Raghavan RJ (1972) Unsteady state pressure distributions created by a well with a single infinite-conductivity vertical fracture. J Petrol Tech (Aug): 347–360; Trans AIME 222

    Google Scholar 

  30. Wong DW, Harrington AG, Cinco-Ley H (1986) Application of the pressure derivative function in the pressure transient testing of fractured wells. SPE Formation Evaluation (Oct),pp, 470–480

    Google Scholar 

  31. Gringarten AC, Ramey HJ Jr, Raghavan RJ (1975) Applied pressure analysis for fractured wells. J Petrol Tech (July): 887–892

    Google Scholar 

  32. Bourdet DP, Alagoa A, Ayoub JA, Pirard YM (1984) New type-curves aid analysis of fissured zone well tests. World Oil (April) 197 (5): 77–87

    Google Scholar 

  33. Bourdet DP, Ayoub JA, Whittle TM, Douglas AA, Pirard YM, Kniazeff V (1983) Interpreting well tests in fractured reservoirs. World Oil (Oct )

    Google Scholar 

  34. Bourdet DP, Ayoub JA, Pirard YM (1984) Use of the pressure derivative in welltest interpretation. Pap SPE 12777, presented at the SPE California Regional Meet, Long Beach, April 1984

    Google Scholar 

  35. Ehlig-Economides C, Ayoub JA (1986) Vertical interference testing across a low permeability zone. SPE Formation Evaluation (Oct), 497–510

    Google Scholar 

  36. Stewart G, Ascharsobbi F (1988) Well test interpretation for naturally fractured reservoirs. Pap SPE 18173, presented at the 63rd Annu Technical Conference, Houston, October 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chierici, G.L. (1994). The Interpretation of Production Tests in Oil Wells. In: Principles of Petroleum Reservoir Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02964-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02964-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02966-4

  • Online ISBN: 978-3-662-02964-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics