Skip to main content

Robust Linear Rules for Nonlinear Systems

  • Conference paper
  • 154 Accesses

Part of the book series: NATO ASI Series ((NATO ASI F,volume 99))

Abstract

In [Hager, 1988] we proposed a framework for describing sensor data fusion problems in terms of data representations, sensors, and sensing tasks. One approach to solving such problems is to use linear updating rules to update representation parameters based on sensor observations. This approach is particularly attractive when fast updates for dynamic systems are required. The disadvantage of this approach has traditionally been the amount of heuristic “tuning” required to ensure the method has accurate, stable behavior. In this article we refine the results found in [Hager & Mintz, 1989b] to study the behavior of linear rules for nonlinear systems. The resulting solutions have an interesting nature, and suggest an interesting relationship between the complexity of computing a rule, and the efficiency with which the rule makes use of information. We point out analogous results for other methods we have studied, and discuss their implications for sensor data fusion.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • N. Aya.che and O. D. Faugeras, (1988). Building, registrating, and fusing noisy visual maps. The International journal of I?obotics Research, 7 (6): 45 - 65.

    Article  Google Scholar 

  • J. O. Berger, (1985). Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • P. Bickel and K. Doksum, (1985). Mathematical Statistics. Holden-Day, Oakland.

    Google Scholar 

  • D. Blackwell and M. Girshick, (1954). Theory of Gantes and Statistical Decisions.John Wiley k Sons, Inc., New York.

    Google Scholar 

  • II. Durrant-Whyte, (1988). Integration, Coordination, and Control of Multi-Sensor Systems. Kluwer, Boston.

    Google Scholar 

  • V. Fedorov, (1972). Theory of Optimal Experiments. Academic Press, New York.

    Google Scholar 

  • A. Gelb, editor, (1974). Applied Optimal Estimation. MIT Press, Cambridge.

    Google Scholar 

  • G. Hager, (1988). Active Reduction of Uncertainty in Multi-sensor Systems. PhD thesis, University of Pennsylvania, Philadelphia. Available a.s Dept.. of Computer Science report MS-CIS-88-47.

    Google Scholar 

  • G. Hager and M. Mintz, (1989a). Computational methods for sensor data. fusion and sensor planning. Under revision for International Journal of Robotics Research.

    Google Scholar 

  • G. Hager and M. Mintz, (1989b). Estimation procedures for robust sensor control. Lr L. Iia.na.l, T. Levitt., and J. Lemmer, editors, Uncertainty in Artificial Intelligence.3, pages 285 - 301, North-Holland, New York.

    Google Scholar 

  • G. Ila.ger and M. Mintz, (1989c). Sensor modeling and robust sensor fusion. In Proceedings of the Fifth International Symposium on Robotics Research,MIT Press.

    Google Scholar 

  • P. Huber, (1981). Robust Statistics. John Wiley Sz. Sons, New York.

    Google Scholar 

  • T. Lozano-Perk, (1985). An Approach to Automatic Robot Programming. A.I. Lab Memo 812, MIT, Cambridge.

    Google Scholar 

  • R. K. Mehra, (1974). Optimal measurement policies and sensor designs for state and parameter estimation. Presented at The Milwaukee Symposium ou Automatic Controls.

    Google Scholar 

  • P. Miller and 11. Weber, (1972). Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems. Automatica, 8: 237 - 246.

    Article  Google Scholar 

  • M. B. Nevelson and R. Z. llasmrinskii, (1976). Stochastic Approximation and Recursive Estimation. American Mathematic Society. trans. from Russian.

    Google Scholar 

  • J. Richardson and K. Marsh, (1987). Fusion of multisensor data.. The International journal of Robotics Research, 7 (8): 78 - 96.

    Google Scholar 

  • S. Silvey, (1980). Optimal Design. Chapman and Hall, New York.

    Book  MATH  Google Scholar 

  • R. Smith and P. Cheeseman, (1987). On the representation and estimation of spatial uncertainty. The International Journal of Robotics Research, 5 (4): 56 - 69.

    Article  Google Scholar 

  • S. Zacks, (1971). The Theory of Statistical Inference_ John Wiley k Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hager, G. (1993). Robust Linear Rules for Nonlinear Systems. In: Aggarwal, J.K. (eds) Multisensor Fusion for Computer Vision. NATO ASI Series, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02957-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02957-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08135-4

  • Online ISBN: 978-3-662-02957-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics