Skip to main content

Principles and Techniques for Sensor Data Fusion

  • Conference paper
Multisensor Fusion for Computer Vision

Part of the book series: NATO ASI Series ((NATO ASI F,volume 99))

Abstract

This paper concerns a problem which is basic to perception: The integration of perceptual information into a coherent description of the world. In this paper we present perception as a process of dynamically maintaining a model of the local external environment. Perceptual fusion is at the heart of this process.

After a brief introduction, we review the background of the problem of fusion in machine vision. We then present fusion as part of the process of dynamic world modeling, and postulate a set of principles for the “fusion” of independent observations. These principles lead to techniques which permit perceptual fusion with qualitatively different forms of data, treating each source of information as a constraint.. For numerical information, these principles lead to specific well known tools such as various forms of Kalman filter and Mahalanobis distance. For symbolic information, these principles suggest representing categories of objects as a conjunction of properties.

Dynamic world modeling is a cyclic process composed of the phases: predict, match and update. We show that in the case of numerical observations, these principals leads to the use Kalman filter techniques for the prediction and update phases, while a Mahalanobis distance is used for matching. These techniques are illustrated with examples from existing systems. We then speculate on the extension of these techniques to symbolic information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Ayache, A. Faugeras, O. “Maintaining Representation of the Environment of a Mobile Robot”. In proc. International Symposium on Robotics Research, Santa Cruz, California, USA, August 1987.

    Google Scholar 

  2. Ayache, N. “Construction et Fusion de Représentations Visuelles 3D”, Thèse de Doctorat d’Etat, Universtié Paris-Sud, centre d’Orsay, 1988

    Google Scholar 

  3. Blake A., Zisserman A., Visual Reconstruction, Cambridge MA, MIT Press, 1987.

    Google Scholar 

  4. Brammer K. and G. Siffling, Kalman Bucy Filters, Artech House Inc., Norwood MA, USA, 1989.

    Google Scholar 

  5. Brooks, R. A., “Visual Map Making for a MObile ROot, In Proc. of the 1985 IEEE Conference on Robotics and Automation, 1985.

    Google Scholar 

  6. Brownston L., R. Farrell, E. Kant and N. Martin, Programming Expert Systems in OPS-5, Addison Wesley, Reading Mass, 1985.

    Google Scholar 

  7. Bucy, R. S. “Optimum finite filters for a special non-stationary class of inputs”, Internal Rep. BBD-600, Applied Physics Laboratory, Johns Hopkins University.

    Google Scholar 

  8. Bucy R. S. and P. D. Joseph, Filtering for Stochastic Processes, with applications to Guidance, Interscience New York, 1968.

    Google Scholar 

  9. Buchanan, B. G. and E. H. Shortliffe, “Rule Based Expert Systems, Addison Wesley, Reading Mass, 1984.

    Google Scholar 

  10. Chatila, R. and J. P. Laumond, “Position Referencing and Consistent World Modeling for Mobile Robots”, Proc of the 2nd IEEE Conf. on Robotics and Automation, St. Louis, March 1985.

    Google Scholar 

  11. Clocksin, W. F. and C. S. Mellish, Programming in Prolog, Springer Verlag, Berlin, 1981.

    MATH  Google Scholar 

  12. “A Computational Paradigm for 3-D Scene Analysis”, IEEE Conf. on Computer Vision, Representation and Control, Annapolis, March 1984.

    Google Scholar 

  13. Crowley, J. L.,“Navigation for an Intelligent Mobile Robot”, IEEE Journal on Robotics and Automation, 1 (1), March 1985.

    Google Scholar 

  14. Crowley, J. L., “Representation and Maintenance of a Composite Surface Model”, IEEE International Conference on Robotics and Automation, San Francisco, Cal., April, 1986.

    Google Scholar 

  15. Crowley, J. L. and F. Ramparany, “Mathematical Tools for Manipulating Uncertainty in Perception”, AAAI Workshop on Spatial Reasoning and Multi-Sensor Fusion“, Kaufmann Press, October, 1987.

    Google Scholar 

  16. Crowley, J. L., P. Stelmaszyk and C. Discours, “Measuring Image Flow by Tracking Edge-Lines”, Second ICCV, Tarpan Springs, Fla. 1988.

    Google Scholar 

  17. Crowley, J. L., P. Bobet and K. Sarachik, “Dynamic World Modeling using Vertical Line Stereo”, First European Conference on Computer Vision, (ECCV1) Antibes, France, 1990.

    Google Scholar 

  18. Crowley, J. L., and P. Stelmaszyk, “Measurement and Integration of 3-D Structures By Tracking Edge Lines”, First European Conference on Computer Vision (ECCV-1), Antibes, France, 1990.

    Google Scholar 

  19. Doyle, J. “A Truth Maintenance Systems”, Artificial Intelligence, Vol 12 (3), 1979.

    Google Scholar 

  20. Duda R. O. and P. E. Hart, Pattern Recognition and Scene Analysis, John Wiley and Sons, New York, 1973.

    Google Scholar 

  21. Duda, R. P. E. Hart and N. Nilsson, “Subjective Bayesioan Methods for Rule Based Inference Systems”, Proc. 1976 Nat. Computer Conf, AFIPS, Vol 45, 1976.

    Google Scholar 

  22. Roach, J. W. and J. K. Aggarwal, “Determining the Movement of Objects in a Sequence of Images”, IEEE Transactions on P.A.M.I., PAMI-2, No. 2, 1980.

    Google Scholar 

  23. Durrant-Whyte, H. F., “Consistent Integration and Propagation of Disparate Sensor Observations”, Int. Journal of Robotics Research, Spring, 1987.

    Google Scholar 

  24. Faugeras, O. D., N. Ayache, and B. Faverjon, “Building Visual Maps by Combining Noisey Stereo Measurements”, IEEE International Conference on Robotics and Automation, San Francisco, Cal., April, 1986.

    Google Scholar 

  25. Forgy, C. L., “RETE: A Fast Algorithm for the Many Pattern Many Object Pattern Match Problem”, Artificial Intelligence, 19 (1), Sept. 1982.

    Google Scholar 

  26. Gennery, D. B., “Tracking Known Three Dimensional Objects”, Proc. of the National Conference on Artificial Intelligence (AAAI-82), Pittsburgh, 1982.

    Google Scholar 

  27. Hayes-Roth, B., “A Blackboard Architecture for Control”, Artificial Intelligence, Vol 26, 1985.

    Google Scholar 

  28. Herman M. and Kanade T. Incremental reconstruction of 3D scenes from multiple complex images. Artificial Intelligence vol-30, pp. 289–341, 1986.

    Google Scholar 

  29. Hopfield J.J. Neural Networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci., vol-79, pp 2554–2558, USA, 1982.

    Google Scholar 

  30. Jazwinski, J. E., Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.

    MATH  Google Scholar 

  31. Kalman, R. E. “A new approach to Linear Filtering and Prediction Problems”, Transactions of the ASME, Series D. J. Basic Eng., Vol 82, 1960.

    Google Scholar 

  32. Kalman, R. E. and R. S. Bucy, “New Results in LInear Filtering and Prediction Theory”, Transaction of the ASME, Series D. J. Basic Eng., Vol 83, 1961.

    Google Scholar 

  33. Koch C., Marroquin J. and Yuille A., “Analog neural networks in early vision”, AI Lab. Memo, N° 751, MIT Cambridge, Mass, 1985.

    Google Scholar 

  34. Kolmogorov, A. N., “Interpolation and Extrapolation of Stationary Random Sequences”, Bulletin of the Academy of Sciences of the USSR Math. Series, VOl 5., 1941.

    Google Scholar 

  35. Li, S.Z. A curve analysis approach to surface feature extraction from range image. Proc Intl Workshop on Machine Intell. and Vision, Tokyo, 1989.

    Google Scholar 

  36. Li, S.Z. Invariant surface segmentation through energy minimization with discontinuities. Submitted to Intl. J. of Computer Vision, 1989.

    Google Scholar 

  37. Marr, D. and E. C. Hildreth, “Theory of Edge Detection”, Proc. of the Roy. Soc. Lond. B, Vol 207, 1980.

    Google Scholar 

  38. Matthies, L., R. Szeliski, and T. Kanade, “Kalman Filter-based Algorithms for Estimating Depth from Image Sequences”, CMU Tech. Report, CMU-CS-87185, December 1987.

    Google Scholar 

  39. Melsa, A. P. and J. L. Sage, Estimation Theory. with Applications to Communications and Control, McGraw-Hill, New York, 1971.

    MATH  Google Scholar 

  40. Poggio T. and Koch C, “Ill-posed problems in early vision: from computational theory to analog networks.” Proc. R. Soc. London, B-226, pp. 303–323, 1985.

    Google Scholar 

  41. Shafer, G., A Mathematical Theory of Evidence, Princeton, 1976.

    Google Scholar 

  42. Smith, R. C. and P. C. Cheeseman, “On the Estimation and Representation of Spatial Uncertainty”, International Journal of Robotics Research 5 (4), Winter, 1987.

    Google Scholar 

  43. Terzopoulos D.T., “Regularization of inverse problems involving discontinuities”, IEEE Trans PAMI-8, pp. 129–139, 1986.

    Google Scholar 

  44. Weiner, N., Extrapolation. Interpolation and Smoothing of Staitionary Time Series, John Wiley and Sons, New York., 1949.

    Google Scholar 

  45. Zadeh, L. A., “A Theory of Approximate Reasoning”, in Machine Intelligence, J. E. Haynes, D. Mitchie and L. I. Mikulich, eds, John Wiley and Sons, NY, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crowley, J.L. (1993). Principles and Techniques for Sensor Data Fusion. In: Aggarwal, J.K. (eds) Multisensor Fusion for Computer Vision. NATO ASI Series, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02957-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02957-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08135-4

  • Online ISBN: 978-3-662-02957-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics