Skip to main content

Multisensor Information Integration for Object Identification

  • Conference paper
Multisensor Fusion for Computer Vision

Part of the book series: NATO ASI Series ((NATO ASI F,volume 99))

  • 154 Accesses

Abstract

Restricting the goal of multisensing to object identification, we examine the problem of integrating multisensor information. We review statistical pattern classifiers, neural networks, and knowledge based systems, with the aim of making explicit their relevance to multisensor information integration for object identification. We will first recall the relevance of statistical pattern classification with a brief summary of a number of relevant results; we will then give an introduction to neural networks; finally, we summarize the basic concepts of knowledge based systems.

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under grant NSERC-A4234

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Workshop on Multisensor Integration in Manufacturing Automation, Snowbird, Utah, Feb. 4–7, 1987, University of Utah Computer Science dept. technical report UUCS-87–006, edited by T.C. Henderson et al.

    Google Scholar 

  2. A. Mitiche and J.K. Aggarwal, ‘Multiple Sensor Integration/Fusion through Image Processing: A Review,’ Optical Engineering, 25, 3, pp. 380–386, March 1986.

    Article  Google Scholar 

  3. T. Kohonen, E. Oja, and P. Lehtiö, ‘Storage and Processing of Information in Associative Memory Systems,’ Chapter 4, in Parallel Models of Associative Memory, E. Hinton and J. Anderson eds., L. Erlbaum Associates, 1981.

    Google Scholar 

  4. J. J. Hopfield, ‘Neural Networks and Physical Systems with Emergent Collective Computational Abilities,’ Proc. Natl. Acad. Sci. USA, 79, pp. 2554–2558, April 1982.

    Article  MathSciNet  Google Scholar 

  5. D. Hebb, The Organization of Behavior, John Wiley & Sons, 1949.

    Google Scholar 

  6. J. J. Hopfield, ‘Neurons with Graded Response Have Collective Computational Properties Like Those of Two-State Neurons,’ Proc. Natl. Acad. Sci. USA, 81, pp. 3088–3092, May 1984.

    Article  Google Scholar 

  7. T. Kohonen, Self Organization and Associative Memory, Springer Verlag, 1984.

    Google Scholar 

  8. H. Ritter and K. Schulten, ‘Kohonen’s Self-Organizing Maps: Exploring their Computational Capabilities,’ IEEE ICNN, San Diego, CA, I, pp. 109–116, July 1988.

    Google Scholar 

  9. H. Ritter and K. Schulten, ‘On the Stationary State of Kohonen’s Self-Organizing Sensory Mapping,’ Biol. Cybern., 54, pp. 99–106, 1986.

    Article  MATH  Google Scholar 

  10. E. Lebail and A. Mitiche, ‘Quantification vectorielle d’images: utilisation de réseau neuronal de Kohonen,’ INRS TR 89–06, 1989.

    Google Scholar 

  11. T. Kohonen, ‘The Neural Phonetic Typewriter,’ Computer, pp. 11–22, March 1988.

    Google Scholar 

  12. D. J. Burr, ‘An Improved Elastic Net Method for the Traveling Salesman Problem,’ IEEE ICNN, San Diego, CA, I, pp. 69–76, July 1988.

    Google Scholar 

  13. G. J. Hueter, ‘Solution of the Traveling Salesman with an Adaptive Ring,’ IEEE ICNN, San Diego, CA, I, pp. 85–92, July 1988.

    Google Scholar 

  14. M. Minsky, Perceptrons. An Introduction to Computational Geometry, The MIT Press, Expanded edition, 1988.

    Google Scholar 

  15. B. Widrow and M. E. Hoff, ‘Adaptive Switching Circuits,’ 1960 IRE WESCON Cony. Record, IV, pp. 96–104, August 1960.

    Google Scholar 

  16. Y. C. Ho and R. L. Kashyap, ‘A Class of Iterative Procedures for Linear Inequalities,’ J. SIAM Control, 4, pp. 112–115, 1966.

    Article  MathSciNet  MATH  Google Scholar 

  17. R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis, John Wiley and Sons, 1973.

    Google Scholar 

  18. R. P. Lippmann, ‘An Introduction to Computing with Neural Nets,’ IEEE ASSP Mag., pp. 4–22, April 1987.

    Google Scholar 

  19. Parallel Distributed Processing: Explorations in the Microstructure of Cognition I and II, D.E. Rumelhart and J.L. McClelland Eds., The MIT Press, 1986.

    Google Scholar 

  20. T. Sejnowsky and C. Rosenserg, ‘Parralel Networks that Learn to Pronounce English Text,’ Complex Systems, 1, 145–168, 1987.

    Google Scholar 

  21. A. Waibel, T. Anazawa, G. Hinton, K. Chikano, and K. Lang, ‘Phoneme Recognition Using Time-Delay Neural Networks,’ IEEE Trans. ASSP, 37, No. 3, pp. 328–339, March 1989.

    Article  Google Scholar 

  22. G. Carpenter and S. Grossberg, ‘A Massively Parallel Architecture for a Self-Organizing Neural Pattern Recognition Machine,’ Computer Vision, Graphics, and Image Processing, 31, No. 1, pp. 54–115, 1987.

    Google Scholar 

  23. M. R. Genesereth and N. J. Nilsson, ‘Logical Foundation of Artificial Intelligence,’ Morgan Kaufmann Publishers inc., Los Alto, CA, 1987.

    Google Scholar 

  24. N. J. Nilsson, ‘Principles of Artificial Intelligence,’ Morgan Kaufmann Publishers inc., Los Alto, CA, 1980.

    Google Scholar 

  25. S. L. Tanimoto, The Elements of Artificial Intelligence Using Lisp Computer Science Press, Rockville, MD, 1987.

    Google Scholar 

  26. L. F. Pau, ‘Sensor Data Fusion,’ Journal of Intelligent and Robotics Systems 1, pp. 103–116, 1988.

    Article  Google Scholar 

  27. L. F. Pau, ‘Multisensor Fusion for Vision using Artificial Intelligence,’ in Digital Image Processing in Industrial Applications IFAC Proc., Pergamon Press, London, 1987.

    Google Scholar 

  28. V. S.-S. Hwang, L. S. Davis, T. Matsuyama, ‘Hypothesis Integration in Image Understanding Systems,’ Computer Vision Graphics and Images Processing 36, pp. 321–371, 1986.

    Article  Google Scholar 

  29. A. Mitichc, A. Mansouri, and C. Meubus, ‘A Knowledge-based Interpretation System,’ Proc. 9 th Int. Conf. on Pattern Recognition,pp. 992–994, Rome, Italy, November 1988

    Google Scholar 

  30. J. B. Adams, ‘A Probability Model of Medical Reasoning and the MYCIN Model,’ Math. Biosci., vol. 32, pp. 177–186, 1976.

    Article  MATH  Google Scholar 

  31. J. Doyle, ‘A Truth Maintenance System,’ Artificial Intelligence, vol. 12, pp. 231272, 1979.

    Google Scholar 

  32. J. P. Martins and S. C. Shapiro, ‘A Model for Belief Revision,’ Artificial Intelligence, vol. 35, pp. 25–79, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  33. J. de Kleer, ‘A Assumption-based TMS,’ Artificial Intelligence,vol. 28, pp. 127162,1986.

    Google Scholar 

  34. R. Laganière and A. Mitiche, ‘A Knowledge-based Intelligent System for Real World Interpretation,’ to appear in Proc. Intelligent Autonomous Systems conference, Amsterdam, December 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mitiche, A., Laganière, R., Henderson, T. (1993). Multisensor Information Integration for Object Identification. In: Aggarwal, J.K. (eds) Multisensor Fusion for Computer Vision. NATO ASI Series, vol 99. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02957-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02957-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08135-4

  • Online ISBN: 978-3-662-02957-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics