Advertisement

Learning Electricity and Cognitive Modeling

  • Michel Caillot
Conference paper
Part of the NATO ASI Series book series (volume 107)

Abstract

The student model in four Intelligent Tutoring Systemsdealing with the learning of electricity is discussed with respect to cognitive modeling. The issue is to know if the student model has taken into account the results of research in physics education. Different kinds of modeling have been proposed in order to explain the student errors: mental models, sequential reasoning and electrical circuit prototypes.

Keyword

intelligent tutoring systems student model cognitive modeling electricity learning misconceptions prototypes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Lehn, K.: Student Modeling. In Poison, M.C. & Richardson, J.J. (Eds): Foundations of Intelligent Tutoring Systems. Hillsdale, N.J.: Lawrence Erlbaum Associates (1988).Google Scholar
  2. 2.
    Duit, R., Jung, W. & von Rhöneck, C. (Eds): Aspects of Understanding Electricity.. Kiel: IPN-Arbeitsberichte (1985).Google Scholar
  3. 3.
    Shipstone, D.M., von Rhöneck, C., Jung, W., Kärrqvist,C., Dupin, J.J., Joshua, S. & Licht, P.: A study of students’ understanding of electricity in five European countries. International Journal of Science Education, 10 (3), 303–316, (1988).CrossRefGoogle Scholar
  4. 4.
    Shipstone, D.M.: On childrens’ use of conceptual models in reasoning about current electricity. In Duit, R., Jung, W. & von Rhöneck, C. (Eds): Aspects of understanding electricity. pp 73–93. Kiel: IPNArbeitsberichte (1985).Google Scholar
  5. 5.
    Closset J.L.: Le raisonnement séquentiel en électrocinétique [The sequential reasoning in basic electricity]. Doctoral dissertation, University of Paris 7 (1983).Google Scholar
  6. 6.
    Caillot, M.: Problem representations and problem solving procedures in electricity. In: Duit,R., Jung,W. & von Rhöneck, C. (Eds): Aspects of understanding electricity, pp 139–152. Kiel: IPN Arbeitsberichte (1985).Google Scholar
  7. 7.
    Caillot, M.: Circuits électriques: schématisation et résolution de problèmes [Electrical circuits: diagrams and problem solving]. Technologies, Idéologies, Pratiques, VII (2), 59–83 (1988).Google Scholar
  8. 8.
    Cauzunolle-Marmèche, E. & Mathieu, J.: Concevoir des systèmes d’EIAO qui reposent sur une modélisation du fonctionnement de l’élève [Designing ICAI systems based on student modeling]. Technologies, Idéologies, Pratiques, VII (2), 85–115 (1988).Google Scholar
  9. 9.
    Rosch, E.: On the internal structure of perceptual and semantic categories. In Moore T.E. (Ed): Cognitive development and the acquisition of language, pp. 111–144. New York: Academic Press (1973).Google Scholar
  10. 10.
    Subrahmanian, E., Talukdar, S. & Mullen, W.: Dr. Thevenin: an intelligent tutoring system for electrical circuits. Technical report. Engineering Design Research Center, Carnegie-Mellon University, Pittsburgh, PA(1986).Google Scholar
  11. 11.
    Lesgold, A.M., Bonar, J.G., Ivill, J.M. & Bowen, A.: An intelligent tutoring system for electronic troubleshooting: DC-circuit understanding. Technical report. Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA(1987).Google Scholar
  12. 12.
    Bonar, J.G.: Bite-Sized Intelligent Tutoring. ITSG Newsletter 85–3. Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA (1985).Google Scholar
  13. 13.
    White, B.Y. & Frederiksen, J.R.: Qualitative models and intelligent learning environments. In Lawler, R. & Yazdani, M. Eds): AI and Education, pp. 281–305. Norwood, NJ: Ablex Publishing Co. (1987).Google Scholar
  14. 14.
    White, B.Y. & Frederiksen, J.R.: Progressions of qualitative models as a foundationfor intelligent learning environments. Technical report No. 6277; BBN Laboratories Inc., Cambridge, MA (1986).Google Scholar
  15. 15.
    Paliès, O., Caillot, M., Cauzinelle-Marmèche, E., Laurière, J.L. & Mathieu, J.: Student modelling by a knowledge-based system. Computational Intelligence, 2, 99–107, (1986).CrossRefGoogle Scholar
  16. 16.
    Paliès, O.: Méta-Connaissances pour la modélisation de l’élève. Contribution au diagnostic cognitif par système expert [Metaknowledge for student modeling. Contribution to cognitive diagnosis by an expert system]. Doctoral dissertation, Pierre-etMarie-Curie University, Paris, (1988).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Michel Caillot
    • 1
  1. 1.Laboratoire Interuniversitaire de Recherche sur 1“Education Scientifique et TechnologiqueUniversity of Paris 7Paris Cedex 05France

Personalised recommendations