Linkage of Plasma Membrane Proteins with the Membrane Skeleton: Insights into Functions in Polarized Epithelial Cells

  • W. James Nelson
Conference paper
Part of the NATO ASI Series book series (volume 74)


Interactions between integral membrane proteins and components of the cytoskeleton, termed the membrane skeleton, are thought to be important in many cellular functions in a wide variety of cell types (Bennett, 1990, Nelson, et al., 1990). A limited number of the proteins involved in these interactions have been identified and characterized, including: interactions between the actin-based cytoskeleton and cell-cell (Ozawa, et al., 1990, Takeichi, 1991, Nelson, et al., 1990, McCrea and Gumbiner, 1991) and cell-substratum adhesion proteins (Burridge, et al., 1988), and ion transport proteins (Nelson and Veshnock, 1987, Morrow, et al., 1989, Srinivasan, et al., 1988). These interactions may be important in restricting protein distributions in the plane of the lipid bilayer, regulating the assembly of protein complexes, and modulating the response of cells to their external environment. Although the identity of membrane proteins that interact with the cytoskeleton is limited at present, detailed analyses of those interactions are providing insight into functions of the membrane skeleton complex.


MDCK Cell Renal Epithelial Cell Membrane Skeleton Cell BioI Apical Membrane Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balcarova SJ, Pfeiffer SE, Fuller SD, Simons K (1984) Development of cell surface polarity in the epithelial Madin-Darby canine kidney ( MDCK) cell line. EMBO 3: 2687-2694.Google Scholar
  2. Bennett V (1990) Spectrin-based membrane skeleton: A multipotential adaptor between plasma membrane and cytoplasm. Physiol Rev 70: 1029 - 1065.PubMedGoogle Scholar
  3. Bennett V (1990) Spectrin: a structural mediator between diverse plasma membrane proteins and the cytoplasm. Curr. Op. Cell Biol 2: 51 - 56.PubMedCrossRefGoogle Scholar
  4. Bennett V, Stenbuck PJ (1979) Identification and partial purification of ankyrin, the high affinity membrane attachment site for human erythrocyte spectrin. J. Biol. Chem 254: 2533-2541.Google Scholar
  5. Bennett V, Stenbuck PJ (1980) Association between ankyrin and the cytoplasmic domain of band 3 isolated from human erthrocyte membranes. J. Biol. Chem. 255: 6424-6432.Google Scholar
  6. Burridge K, Fath K, Kelly T, Nuckolls G, Turner C (1988) Focal adhesion: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell Biol. 4: 487-525.Google Scholar
  7. Davis J, Davis L, Bennett V (1989) Diversity in membrane binding sites of ankyrin. J. Biol. Chem. 264: 6417-6426.Google Scholar
  8. Drenckhahn D, Schulter K, Allen D, Bennett V (1985) Colocalization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney. Science 230: 1287 - 1289.PubMedCrossRefGoogle Scholar
  9. Gardner K, Bennett V (1986) A new erythrocyte membrane-associated protein with calmodulin binding activity: identification and purification. J. Biol. Chem. 261: 13391348.Google Scholar
  10. Gardner K, Bennett V (1987) Modulation of spectrin-actin assembly by erythrocyte adducin. Nature 328: 359 - 362.PubMedCrossRefGoogle Scholar
  11. Gumbiner B, Simons K (1986) A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J. Cell Biol. 102: 457 - 468.PubMedCrossRefGoogle Scholar
  12. Gumbiner B, Stevenson B, Grimaldi A (1988) The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J. Cell Biol. 107: 1575 - 1587.PubMedCrossRefGoogle Scholar
  13. Gundersen D, Orlowski J, Rodriguez-Boulan E (1991) Apical polarity of Na,K-ATPase in retinal pigment epithelium is linked to a reversal of the ankyrin-fodrin submembrane cytoskeleton. J. Cell Biol. 112: 863 - 872.PubMedCrossRefGoogle Scholar
  14. Hammerton RW, Krzeminski KA, Mays RW, Ryan TA, Wollner DA, Nelson WJ (1991) Mechanism for regulating cell surface distribution of Na/K-ATPase in polarized epithelial cells. Science 254: 847 - 850.PubMedCrossRefGoogle Scholar
  15. Lux SE, John KM, Bennett V (1990) Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344: 36 - 42.PubMedCrossRefGoogle Scholar
  16. McCrea PD, Gumbiner B (1991) Purification of a 92kDa cytoplasmic protein tightly associated with the cell-cell adhesion molecule E-cadherin (Uvomorulin). J. Biol. Chem. 266: 4514-4520.Google Scholar
  17. McNeill H, Ozawa M, Kemler R, Nelson WJ (1990) Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell 62: 309 - 316.PubMedCrossRefGoogle Scholar
  18. Mooseker MS (1985) Organization, chemistry, and assembly of the cytoskeletal apparatus of the intestinal brush border. Annu. Rev. Cell Biol. 1: 209 - 242.PubMedCrossRefGoogle Scholar
  19. Morrow JS, Cianci CD, Ardito T, Mann AS, Kashgarian M (1989) Ankyrin links fodrin to the alpha subunit of Na/K-ATPase in Madin-Darby canine kidney cells and in intact renal tubule cells. J. Cell Biol. 108: 455 - 465.PubMedCrossRefGoogle Scholar
  20. Nagafuchi A, Shirayoshi Y, Okazaki K, Yasuda K, Takeichi M (1987) Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 329: 340343.Google Scholar
  21. Nelson WJ (1989) Topogenesis of plasma membrane domains in polarized epithelial cells. Curr. Opp. Cell Biol. 1: 660 - 668CrossRefGoogle Scholar
  22. Nelson WJ, Hammerton RW (1989) A membrane-cytoskeletal complex containing Na/KATPase, ankyrin, and fodrin in Madin-Darby canine kidney (MDCK) cells: implications for the biogenesis of epithelial cell polarity. J. Cell Biol. 108: 893 - 902.PubMedCrossRefGoogle Scholar
  23. Nelson WJ, Hammerton RW, Wang AZ, Shore EM (1990) Involvement of the membranecytoskeleton in the development of epithelial cell polarity. Sem. Cell Biol. 1: 359-371.Google Scholar
  24. Nelson WJ, Lazarides E (1984) Assembly and establishment of membrane-cytoskeleton domains during differentiation: spectrin as a model system. Mod. Cell Biol. 2: 219246.Google Scholar
  25. Nelson WJ, Shore EM, Wang AZ, Hammerton RW (1990) Identification of a membranecytoskeletal complex containing the cell adhesion molecule uvomorulin (E-cadherin), ankyrin, and fodrin in Madin-Darby canine kidney epithelial cells. J. Cell Biol. 110: 349-357.Google Scholar
  26. Nelson WJ, Veshnock PJ (1986) Dynamics of membrane skeleton (fodrin) organization during development of polarity in Madin-Darby canine kidney epithelial cells. J. Cell Biol. 103: 1751 - 1765.PubMedCrossRefGoogle Scholar
  27. Nelson WJ, Veshnock PJ (1987) Ankyrin binding to Na/K-ATPase and implications for the organization of membrane domains in polarized cells. Nature 328: 533 - 536.PubMedCrossRefGoogle Scholar
  28. Nelson WJ, Veshnock PJ (1987) Modulation of fodrin (membrane skeleton) stability by cell-cell contact in Madin-Darby canine kidney epithelial cells. J. Cell Biol. 104: 15271537.Google Scholar
  29. Ozawa M, Ringwald M, Kemler R (1990) Uvomorulin-catenin complex formation is regulated by a specific domain in the cytoplasmic region of the cell adhesion molecule. Proc. Natl. Acad. Sci. U S A 87: 4246-4250.Google Scholar
  30. Rodriguez-Boulan E, Nelson WJ (1989) Morphogenesis of the polarized epithelial cell phenotype. Science 245: 718 - 725.PubMedCrossRefGoogle Scholar
  31. Sheetz MP, Schindler M, Koppel D (1980) Lateral mobility of integral membrane proteins is increased in spherocytic erythrocytes. Nature 285: 510 - 512.PubMedCrossRefGoogle Scholar
  32. Shotton DM, Burke BE, Branton D (1979) The molecular structure of erythrocyte spectrin. J. Mol. Biol. 131: 303-329.Google Scholar
  33. Srinivasan Y, Elmer L, Davis J, Bennett V, Angelides K (1988) Ankyrin and spectrin associate with voltage-dependent sodium channels in brain. Nature 333: 177 - 180.PubMedCrossRefGoogle Scholar
  34. Sweadner ICJ (1989) Isoenzymes of the Na/K-ATPase. Biochem. Biophys. Acta 988: 185 - 220.PubMedCrossRefGoogle Scholar
  35. Takeichi M (1991) Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251: 1451 - 1457.PubMedCrossRefGoogle Scholar
  36. Ungewickell E, Bennett PM, Calver R, Ohanian V, Gratzer WB (1979) In vitro formation of a complex between cytoskeletal proteins of the human erythrocyte. Nature 380: 811 - 814.CrossRefGoogle Scholar
  37. Wasenius VM, Saraste M, Salver P, Erammaa M, Holm L, Lehto VP (1989) Primary structure of the brain alpha-spectrin. J. Cell Biol. 108: 79 - 93.PubMedCrossRefGoogle Scholar
  38. Wright EM (1972) Mechanisms of ion transport across the choroid plexus. J. Physiol. 226: 545 - 571.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • W. James Nelson
    • 1
  1. 1.Department of Molecular and Cellular PhysiologyUniversity School of MedicineStanfordUSA

Personalised recommendations