Advertisement

Regulation of Early Endosome Fusion In Vitro

  • Olivia Steele-Mortimer
  • Michael J. Clague
  • Leo Thomas
  • Jean-Pierre Gorvel
  • Jean Gruenberg
Conference paper
Part of the NATO ASI Series book series (volume 74)

Abstract

It is well known that molecules entering the cell do so via the early endosome. Within five minutes of internalization into animal cells, lipids, solutes and trans-membrane proteins (including receptors and their bound ligands), appear in early endosomes located predominately at the cell periphery (Griffiths and Gruenberg, 1991; Murphy, 1991). Molecules which return to the plasma membrane, in particular cell surface receptors, are rapidly recycled from the early endosome. In contrast, molecules destined for degradation are transported to the perinuclear late endosomes, and eventually to the lysosomes. The endocytic pathway is also connected, via vesicular traffic, to the biosynthetic pathway (Kornfeld and Mellman, 1989).

Keywords

Membrane Transport Early Endosome Late Endosome Endocytic Pathway Transport Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailly, E., McCaffrey, M., Touchot, N., Zahraoui, A., Goud, B., and Bornens, M. (1991). Phosphorylation of two small GTP-binding proteins of the rab family by p34 cdc2. Nature 350, 715–718.PubMedCrossRefGoogle Scholar
  2. Baker, D., Wuestehube, L., Scheckman, R. and Segev, N. (1990). GTPbinding YPT1 protein and Ca2+ function independently in a cell-free protein transport reaction. PNAS USA 87, 355–359.Google Scholar
  3. Balch, W. E. (1992). From G minor to G major. Current Biology 2, 157160Google Scholar
  4. Burstein, E. S., Linko-Stentz, K., Lu, Z., and Macara, I. G. (1991). Regulation of the GTPase activity of the ras like protein p25-rab3a: evidence for a rab3a specific GAP. J. Biol. Chem. 266, 2689–2692.Google Scholar
  5. Bomsel, M., Parton, R., Kuznetsov, S. A., Schroer, T. A., and Gruenberg, J. (1990). Microtubule and motor dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62, 719–731.PubMedCrossRefGoogle Scholar
  6. Bomsel, M., Prydz, K., Parton, R. G., Gruenberg, J., and Simons, K. (1989). Endocytosis in filter-grown Madin-Darby canine kidney cells. j. Cell Biol. 109, 3243–3258.CrossRefGoogle Scholar
  7. Bourne, H. (1988). Do GTPases direct membrane traffic in secretion? Cell 53, 669–671.PubMedCrossRefGoogle Scholar
  8. Bourne, H. R., Sanders, D. A., and McCormick, F. (1990). The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132.PubMedCrossRefGoogle Scholar
  9. Bucci, C., Parton, R. G., Mather, I. H. Stunnenberg, H. Simons, K., Hoflack, B., and Zerial, M. (in press). The small GTP-ase rab5 functions as a regulatory factor in the early endocytic pathway. CellGoogle Scholar
  10. Chavrier, P., Gorvel, J. P., Stelzer, E., Simons, K., Gruenberg, J., and Zerial, M. (1991). Hypervariable C-terminal domain of rab proteins acts as a targetting signal. Nature 353, 769–772.PubMedCrossRefGoogle Scholar
  11. Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K., and Zerial, M. (1990). Localisation of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62, 317–329.PubMedCrossRefGoogle Scholar
  12. Colombo, M. I., Mayorga, L. S., Casey, P. J., and Stahl, P. D. (1992). Evidence of a role for heterotrimeric GTP-binding proteins in endosome fusion. Science 255, 1695–1697.Google Scholar
  13. D’Enfert, C., Wuestehube, L. J., Lila, T., and Schekman, R. (1991). Sec12pdependent membrane binding of the small GTP-binding protein Sar1 p promotes formation of transport vesicles from the ER. J. Cell Biol. 114, 663–670.PubMedCrossRefGoogle Scholar
  14. Diaz, R. Mayorga, L. S., Weidman, P. J., Rothman, J. E., and Stahl, P. (1989). Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport. Nature 339,398–400.Google Scholar
  15. Fisher von Mollard, G., Mignerg, G., Baumert, M., Perin, M., Hanson, T., Burger, P., Jahn, R. and Sudhof, T. (1990). Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. PNAS USA 87, 1988–1992.CrossRefGoogle Scholar
  16. Goda, Y., and Pfeffer, S. R. (1988). Selective recycling of the mannose 6phosphate/IGF-II receptor to the TGN in vitro. Cell 55, 309–320.PubMedCrossRefGoogle Scholar
  17. Gorvel, J. P., Chavrier, P., Zerial, M., and Gruenberg, J. (1991). Rab 5 controls early endosome fusion in vitro. Cell 64, 915–925.PubMedCrossRefGoogle Scholar
  18. Goud, B., Salminen, A., Walworth, N. C., and Novick, P. J. (1988). A GTPbinding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53, 753768.Google Scholar
  19. Goud, B., Zahraoui, A., Tavitian, A. and Saraste, J. (1990) Small GTPbinding protein associated with Golgi cisternae. Nature 345, 553.PubMedCrossRefGoogle Scholar
  20. Goud, B., and McCaffrey, M. (1991). Small GTP-binding proteins and their role in transport. Curr. Opin. Cell Biol. 3, 626–633.Google Scholar
  21. Griffiths, G., and Gruenberg, J. (1991). The arguments for pre-existing early and late endosomes. Trends Cell Biol. 1, 5–9.PubMedCrossRefGoogle Scholar
  22. Gruenberg, J., and Clague, M. (1992). Regulation of intracellular membrane transport. Curr. Op. Cell Biol. in press Google Scholar
  23. Gruenberg, J., Griffiths, G., and Howell, K. E. (1989). Characterisation of the early endosome and putative endocytic carrier vesicles in vivo and with an ssay of vesicle fusion in vitro. J. Cell Biol. 108, 1301–1316.PubMedCrossRefGoogle Scholar
  24. Gruenberg, J., and Howell, K. E. (1989). Membrane traffic in endocytosis: insights from cell-free assays. Annu. Rev. Cell Biol. 5, 453–481.Google Scholar
  25. Hopkins, C. R., Gibson, A., Shipman, M., and Miller, K. (1990). Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature 346, 335–339.PubMedCrossRefGoogle Scholar
  26. Kabcenell, A. K., Goud, B., Northup, J. K., and Novick, P. J. (1990). Binding and hydrolysis of guanine nucleotides by sec4p, a yeast protein involved in the regulation of vesicular transport. J. Biol. Chem. 265, 9366–9372.PubMedGoogle Scholar
  27. Kahn, R. A. (1991). Fluoride is not an activator of the smaller (20–25 kDa) GTP-binding proteins. J. Biol. Chem. 266, 15595–15597.PubMedGoogle Scholar
  28. Kinsella, B. T., and Maltese, W. A. (1991). rab GTP-binding protein implicated in vesicular transport are isoprenylated in vitro at cysteines within a novel carboxy-terminal motif. J. Biol. Chem. 266, 8540–8544.Google Scholar
  29. Kornfeld, S., and Mellman, I. (1989). The biogenesis of lysosomes. Annu. Rev. Cell Biol. 5, 483–526.PubMedCrossRefGoogle Scholar
  30. Lenhard, J. M., Kahn, R. A., and Stahl, P. D. (1992). Evidence for ADPribosylation factor (ARF) as a regulator of in vitro endosomeendosome fusion. 267, 13047–13052.Google Scholar
  31. Marsh, H. M., Griffiths, G., Dean, G. E., Mellman, I. and Helenius, A. (1986). Three-dimensional structure of endosomes in BHK-21 cells. PNAS USA 83, 2899–2903.PubMedCrossRefGoogle Scholar
  32. Mayorga, L. S., Diaz, R., Colombo, M. I., and Stahl, P. D. (1989). GTPyS stimulation of endosome fusion suggests a role for a GTP-binding protein in the priming of vesicles before fusion. Cell Regulation 1, 113–124.PubMedGoogle Scholar
  33. Mullock, B. M., Branch, W. J., vanSchaik, M., Gilbert, L. K., and Luzio, J. P. (1989). Reconstitution of an endosome-lysosome interaction in a cell-free system. J. Cell Biol. 108, 2093–2099.PubMedCrossRefGoogle Scholar
  34. Murphy, R. F. (1991). Maturation models for endosome and lysosome biogenesis. Trends Cell Biol. 1, 77–82.PubMedCrossRefGoogle Scholar
  35. Parton, R. G., Prydz, K., Bomsel, M., Simons, K., and Griffiths, G. (1989). Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J. Cell Biol. 109, 3259–3272.PubMedCrossRefGoogle Scholar
  36. Pfeffer, S. (1992). GTP-binding proteins in intracellular transport. Trends Cell Biol. 2, 41–46.PubMedCrossRefGoogle Scholar
  37. Rexach, M. F., and Schekman, R. W. (1991). Distinct biochemical requirements for the budding, targeting and fusion of ER-derived transport vesicles. J. Cell Biol. 114, 219–229.PubMedCrossRefGoogle Scholar
  38. Rothman, J. E., and Orci, L. (1992). Molecular dissection of the secretory pathway. Nature 355, 409–415.PubMedCrossRefGoogle Scholar
  39. Salminen, A., and Novick, P. J. (1987). A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49, 527–538.PubMedCrossRefGoogle Scholar
  40. Segev, N., Mulholland, J., and Botstein, D. (1988). The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52, 915–924.PubMedCrossRefGoogle Scholar
  41. Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A., and Rothman, J. E. (1991). ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239–253.PubMedCrossRefGoogle Scholar
  42. Thomas, L., Clarke, P., Pagano, M., and Gruenberg, J. (1992). Inhibition of membrane fusion in vitro via cyclin B but not cyclin A. J. Biol. Chem. 267, 6183–6187.PubMedGoogle Scholar
  43. Tooze, J., and Hollinshead, M. (1991). Tubular early endosomal network in AtT20 and other cells. J. Cell Biol. 115, 635–654.PubMedCrossRefGoogle Scholar
  44. Tuomikoski, T., Felix, M., Doree, M., and Gruenberg, J. (1989). Inhibition of endocytic vesicle fusion in vitro by the cell-cycle control protein kinase cdc2. Nature 342, 942–945.PubMedCrossRefGoogle Scholar
  45. Valencia, A., Chardin, P., Wittinghofer, A., Sander, C. (1991). The ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry 30, 4637–4648.PubMedCrossRefGoogle Scholar
  46. van der Sluijs, P., Hull, M., Zahraoui, A., Tavitian, A., Goud, B., and Mellman, I. (1991). The small GTP-binding protein rab4 is associated with early endosomes. Proc. Natl. Acad. Sci. 88, 6313–6317.CrossRefGoogle Scholar
  47. Wagner, P., Molenaar, C. M., Rauh, A. J., Brokel, R., Schmitt, H. D. and Gallwitz, D. (1997) Biochemical properties of the ras-related YPT1 protein in yeast: a mutational analysis. EMBO J. 6, 2373–2379.Google Scholar
  48. Warren, G. (1989). Mitosis and membranes. Nature 342, 857–858.PubMedCrossRefGoogle Scholar
  49. Wessling-Resnick, M., and Braell, W. A. (1990). Characterization of the mechanism of endocytic vesicle fusion in vitro. J. Biol. Chem. 265, 16751–16759.PubMedGoogle Scholar
  50. Woodman, P., Mundy, D. I., Cohen, P., and Warren, G. (1992). Cell-free fusion of endocytic vesicles is regulated by phosphorylation. J. Cell Biol. 116, 331–338.PubMedCrossRefGoogle Scholar
  51. Woodman, P., and Warren, G. (1991). Isolation of functional, coated endocytic vesicles. J. Cell Biol. 112, 1133–1141.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Olivia Steele-Mortimer
    • 1
  • Michael J. Clague
    • 1
  • Leo Thomas
    • 1
  • Jean-Pierre Gorvel
    • 1
  • Jean Gruenberg
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations