Skip to main content

Regulation of Early Endosome Fusion In Vitro

  • Conference paper
  • 129 Accesses

Part of the book series: NATO ASI Series ((ASIH,volume 74))

Abstract

It is well known that molecules entering the cell do so via the early endosome. Within five minutes of internalization into animal cells, lipids, solutes and trans-membrane proteins (including receptors and their bound ligands), appear in early endosomes located predominately at the cell periphery (Griffiths and Gruenberg, 1991; Murphy, 1991). Molecules which return to the plasma membrane, in particular cell surface receptors, are rapidly recycled from the early endosome. In contrast, molecules destined for degradation are transported to the perinuclear late endosomes, and eventually to the lysosomes. The endocytic pathway is also connected, via vesicular traffic, to the biosynthetic pathway (Kornfeld and Mellman, 1989).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailly, E., McCaffrey, M., Touchot, N., Zahraoui, A., Goud, B., and Bornens, M. (1991). Phosphorylation of two small GTP-binding proteins of the rab family by p34 cdc2. Nature 350, 715–718.

    Article  PubMed  CAS  Google Scholar 

  • Baker, D., Wuestehube, L., Scheckman, R. and Segev, N. (1990). GTPbinding YPT1 protein and Ca2+ function independently in a cell-free protein transport reaction. PNAS USA 87, 355–359.

    Google Scholar 

  • Balch, W. E. (1992). From G minor to G major. Current Biology 2, 157160

    Google Scholar 

  • Burstein, E. S., Linko-Stentz, K., Lu, Z., and Macara, I. G. (1991). Regulation of the GTPase activity of the ras like protein p25-rab3a: evidence for a rab3a specific GAP. J. Biol. Chem. 266, 2689–2692.

    Google Scholar 

  • Bomsel, M., Parton, R., Kuznetsov, S. A., Schroer, T. A., and Gruenberg, J. (1990). Microtubule and motor dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62, 719–731.

    Article  PubMed  CAS  Google Scholar 

  • Bomsel, M., Prydz, K., Parton, R. G., Gruenberg, J., and Simons, K. (1989). Endocytosis in filter-grown Madin-Darby canine kidney cells. j. Cell Biol. 109, 3243–3258.

    Article  CAS  Google Scholar 

  • Bourne, H. (1988). Do GTPases direct membrane traffic in secretion? Cell 53, 669–671.

    Article  PubMed  CAS  Google Scholar 

  • Bourne, H. R., Sanders, D. A., and McCormick, F. (1990). The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348, 125–132.

    Article  PubMed  CAS  Google Scholar 

  • Bucci, C., Parton, R. G., Mather, I. H. Stunnenberg, H. Simons, K., Hoflack, B., and Zerial, M. (in press). The small GTP-ase rab5 functions as a regulatory factor in the early endocytic pathway. Cell

    Google Scholar 

  • Chavrier, P., Gorvel, J. P., Stelzer, E., Simons, K., Gruenberg, J., and Zerial, M. (1991). Hypervariable C-terminal domain of rab proteins acts as a targetting signal. Nature 353, 769–772.

    Article  PubMed  CAS  Google Scholar 

  • Chavrier, P., Parton, R. G., Hauri, H. P., Simons, K., and Zerial, M. (1990). Localisation of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 62, 317–329.

    Article  PubMed  CAS  Google Scholar 

  • Colombo, M. I., Mayorga, L. S., Casey, P. J., and Stahl, P. D. (1992). Evidence of a role for heterotrimeric GTP-binding proteins in endosome fusion. Science 255, 1695–1697.

    Google Scholar 

  • D’Enfert, C., Wuestehube, L. J., Lila, T., and Schekman, R. (1991). Sec12pdependent membrane binding of the small GTP-binding protein Sar1 p promotes formation of transport vesicles from the ER. J. Cell Biol. 114, 663–670.

    Article  PubMed  Google Scholar 

  • Diaz, R. Mayorga, L. S., Weidman, P. J., Rothman, J. E., and Stahl, P. (1989). Vesicle fusion following receptor-mediated endocytosis requires a protein active in Golgi transport. Nature 339,398–400.

    Google Scholar 

  • Fisher von Mollard, G., Mignerg, G., Baumert, M., Perin, M., Hanson, T., Burger, P., Jahn, R. and Sudhof, T. (1990). Rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles. PNAS USA 87, 1988–1992.

    Article  Google Scholar 

  • Goda, Y., and Pfeffer, S. R. (1988). Selective recycling of the mannose 6phosphate/IGF-II receptor to the TGN in vitro. Cell 55, 309–320.

    Article  PubMed  CAS  Google Scholar 

  • Gorvel, J. P., Chavrier, P., Zerial, M., and Gruenberg, J. (1991). Rab 5 controls early endosome fusion in vitro. Cell 64, 915–925.

    Article  PubMed  CAS  Google Scholar 

  • Goud, B., Salminen, A., Walworth, N. C., and Novick, P. J. (1988). A GTPbinding protein required for secretion rapidly associates with secretory vesicles and the plasma membrane in yeast. Cell 53, 753768.

    Google Scholar 

  • Goud, B., Zahraoui, A., Tavitian, A. and Saraste, J. (1990) Small GTPbinding protein associated with Golgi cisternae. Nature 345, 553.

    Article  PubMed  CAS  Google Scholar 

  • Goud, B., and McCaffrey, M. (1991). Small GTP-binding proteins and their role in transport. Curr. Opin. Cell Biol. 3, 626–633.

    Google Scholar 

  • Griffiths, G., and Gruenberg, J. (1991). The arguments for pre-existing early and late endosomes. Trends Cell Biol. 1, 5–9.

    Article  PubMed  CAS  Google Scholar 

  • Gruenberg, J., and Clague, M. (1992). Regulation of intracellular membrane transport. Curr. Op. Cell Biol. in press

    Google Scholar 

  • Gruenberg, J., Griffiths, G., and Howell, K. E. (1989). Characterisation of the early endosome and putative endocytic carrier vesicles in vivo and with an ssay of vesicle fusion in vitro. J. Cell Biol. 108, 1301–1316.

    Article  PubMed  CAS  Google Scholar 

  • Gruenberg, J., and Howell, K. E. (1989). Membrane traffic in endocytosis: insights from cell-free assays. Annu. Rev. Cell Biol. 5, 453–481.

    Google Scholar 

  • Hopkins, C. R., Gibson, A., Shipman, M., and Miller, K. (1990). Movement of internalized ligand-receptor complexes along a continuous endosomal reticulum. Nature 346, 335–339.

    Article  PubMed  CAS  Google Scholar 

  • Kabcenell, A. K., Goud, B., Northup, J. K., and Novick, P. J. (1990). Binding and hydrolysis of guanine nucleotides by sec4p, a yeast protein involved in the regulation of vesicular transport. J. Biol. Chem. 265, 9366–9372.

    PubMed  CAS  Google Scholar 

  • Kahn, R. A. (1991). Fluoride is not an activator of the smaller (20–25 kDa) GTP-binding proteins. J. Biol. Chem. 266, 15595–15597.

    PubMed  CAS  Google Scholar 

  • Kinsella, B. T., and Maltese, W. A. (1991). rab GTP-binding protein implicated in vesicular transport are isoprenylated in vitro at cysteines within a novel carboxy-terminal motif. J. Biol. Chem. 266, 8540–8544.

    Google Scholar 

  • Kornfeld, S., and Mellman, I. (1989). The biogenesis of lysosomes. Annu. Rev. Cell Biol. 5, 483–526.

    Article  PubMed  CAS  Google Scholar 

  • Lenhard, J. M., Kahn, R. A., and Stahl, P. D. (1992). Evidence for ADPribosylation factor (ARF) as a regulator of in vitro endosomeendosome fusion. 267, 13047–13052.

    CAS  Google Scholar 

  • Marsh, H. M., Griffiths, G., Dean, G. E., Mellman, I. and Helenius, A. (1986). Three-dimensional structure of endosomes in BHK-21 cells. PNAS USA 83, 2899–2903.

    Article  PubMed  CAS  Google Scholar 

  • Mayorga, L. S., Diaz, R., Colombo, M. I., and Stahl, P. D. (1989). GTPyS stimulation of endosome fusion suggests a role for a GTP-binding protein in the priming of vesicles before fusion. Cell Regulation 1, 113–124.

    PubMed  CAS  Google Scholar 

  • Mullock, B. M., Branch, W. J., vanSchaik, M., Gilbert, L. K., and Luzio, J. P. (1989). Reconstitution of an endosome-lysosome interaction in a cell-free system. J. Cell Biol. 108, 2093–2099.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, R. F. (1991). Maturation models for endosome and lysosome biogenesis. Trends Cell Biol. 1, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Parton, R. G., Prydz, K., Bomsel, M., Simons, K., and Griffiths, G. (1989). Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J. Cell Biol. 109, 3259–3272.

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer, S. (1992). GTP-binding proteins in intracellular transport. Trends Cell Biol. 2, 41–46.

    Article  PubMed  CAS  Google Scholar 

  • Rexach, M. F., and Schekman, R. W. (1991). Distinct biochemical requirements for the budding, targeting and fusion of ER-derived transport vesicles. J. Cell Biol. 114, 219–229.

    Article  PubMed  CAS  Google Scholar 

  • Rothman, J. E., and Orci, L. (1992). Molecular dissection of the secretory pathway. Nature 355, 409–415.

    Article  PubMed  CAS  Google Scholar 

  • Salminen, A., and Novick, P. J. (1987). A ras-like protein is required for a post-Golgi event in yeast secretion. Cell 49, 527–538.

    Article  PubMed  CAS  Google Scholar 

  • Segev, N., Mulholland, J., and Botstein, D. (1988). The yeast GTP-binding YPT1 protein and a mammalian counterpart are associated with the secretion machinery. Cell 52, 915–924.

    Article  PubMed  CAS  Google Scholar 

  • Serafini, T., Orci, L., Amherdt, M., Brunner, M., Kahn, R. A., and Rothman, J. E. (1991). ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP coated vesicles: a novel role for a GTP-binding protein. Cell 67, 239–253.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, L., Clarke, P., Pagano, M., and Gruenberg, J. (1992). Inhibition of membrane fusion in vitro via cyclin B but not cyclin A. J. Biol. Chem. 267, 6183–6187.

    PubMed  CAS  Google Scholar 

  • Tooze, J., and Hollinshead, M. (1991). Tubular early endosomal network in AtT20 and other cells. J. Cell Biol. 115, 635–654.

    Article  PubMed  CAS  Google Scholar 

  • Tuomikoski, T., Felix, M., Doree, M., and Gruenberg, J. (1989). Inhibition of endocytic vesicle fusion in vitro by the cell-cycle control protein kinase cdc2. Nature 342, 942–945.

    Article  PubMed  CAS  Google Scholar 

  • Valencia, A., Chardin, P., Wittinghofer, A., Sander, C. (1991). The ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry 30, 4637–4648.

    Article  PubMed  CAS  Google Scholar 

  • van der Sluijs, P., Hull, M., Zahraoui, A., Tavitian, A., Goud, B., and Mellman, I. (1991). The small GTP-binding protein rab4 is associated with early endosomes. Proc. Natl. Acad. Sci. 88, 6313–6317.

    Article  Google Scholar 

  • Wagner, P., Molenaar, C. M., Rauh, A. J., Brokel, R., Schmitt, H. D. and Gallwitz, D. (1997) Biochemical properties of the ras-related YPT1 protein in yeast: a mutational analysis. EMBO J. 6, 2373–2379.

    Google Scholar 

  • Warren, G. (1989). Mitosis and membranes. Nature 342, 857–858.

    Article  PubMed  CAS  Google Scholar 

  • Wessling-Resnick, M., and Braell, W. A. (1990). Characterization of the mechanism of endocytic vesicle fusion in vitro. J. Biol. Chem. 265, 16751–16759.

    PubMed  CAS  Google Scholar 

  • Woodman, P., Mundy, D. I., Cohen, P., and Warren, G. (1992). Cell-free fusion of endocytic vesicles is regulated by phosphorylation. J. Cell Biol. 116, 331–338.

    Article  PubMed  CAS  Google Scholar 

  • Woodman, P., and Warren, G. (1991). Isolation of functional, coated endocytic vesicles. J. Cell Biol. 112, 1133–1141.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steele-Mortimer, O., Clague, M.J., Thomas, L., Gorvel, JP., Gruenberg, J. (1993). Regulation of Early Endosome Fusion In Vitro. In: Morré, D.J., Howell, K.E., Bergeron, J.J.M. (eds) Molecular Mechanisms of Membrane Traffic. NATO ASI Series, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02928-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02928-2_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02930-5

  • Online ISBN: 978-3-662-02928-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics