Advertisement

CLIP-170, a Cytoplasmic Linker Protein Mediating Interaction of Endosomes with Microtubules

  • J. Scheel
  • J. E. Rickard
  • P. Pierre
  • D. Hennig
  • P. I. Karecla
  • R. Pepperkok
  • B. Joggerst-Thomalla
  • A. Sawyer
  • R. G. Parton
  • T. E. Kreis
Conference paper
Part of the NATO ASI Series book series (volume 74)

Abstract

Microtubules play a key role in the dynamic spatial organization of the cytoplasmic matrix. They are involved in regulating the structure and positioning of intracellular organelles like the Golgi apparatus and endosomes, and they provide the tracks for directed movement of such organelles [Kreis, 1990]. Membrane-bounded cytoplasmic organelles attach to microtubules, move along or remain stably associated with them, and eventually detach. These interactions of organelles with microtubules appear to be specific. For example, endosomes, but not Golgi elements, reverse their direction of translocation along microtubules upon acidification of the cytoplasm [Heuser, 1989; Parton et al., 1991]. These various interactions require different levels of regulation; specificity and timing of binding and release, positioning, and direction of movement. We postulate, therefore, that different proteins must be involved in the regulation of these interactions of cytoplasmic organelles with microtubules.

Keywords

Golgi Apparatus Motor Protein Early Endosome Late Endosome Cytoplasmic Organelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berlin V, Styles CA, Fink GR, (1990) BIK1, a protein required for microtubule function during mating and mitosis in Saccharomyces cerevisiae, colocalizes with tubulin. J Cell Biol 111: 2573 - 2586PubMedCrossRefGoogle Scholar
  2. Bloom GS, Brashear TA (1989) A novel 58-kDa protein associates with the Golgi apparatus and microtubules. J Biol Chem 264: 1 6083-1 6092Google Scholar
  3. Bomsel M, Parton R, Kuznetsov SA, Schroer TA, Gruenberg J (1990) Microtubule-and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62: 719 - 731PubMedCrossRefGoogle Scholar
  4. Collins CA (1991) Dynamin: a novel microtubule-associated GTP ase. Trends Cell Biol 1: 57 - 60PubMedCrossRefGoogle Scholar
  5. Gill SR, Schroer TA, Szilak I, Steuer ER, Sheetz MP, Cleveland DW (1991) Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol 115: 1639 - 1650PubMedCrossRefGoogle Scholar
  6. Gruenberg J, Griffiths G, Howell K (1989) Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay for vesicle fusion in vitro. J Cell Biol 108: 1301 - 1316PubMedCrossRefGoogle Scholar
  7. Heuser J (1989) Changes in lysosome shape and distribution correlated with changes in cytoplasmic pH. J Cell Biol 108: 855 - 864PubMedCrossRefGoogle Scholar
  8. Holzbauer ELF, Hammarback JA, Paschal BM, Kravit NG, Pfister KK, Vallee RB (1991) Homology of a 150K cytoplasmic dynein-associated polypeptide with the Drosophila gene Glued. Nature 351: 579 - 583CrossRefGoogle Scholar
  9. Karecla PI, Kreis TE (1992) Interaction of membranes of the Golgi complex with microtubules in vitro. Eur J Cell Biol 57: 139 - 146PubMedGoogle Scholar
  10. Kreis TE (1990) Role of microtubules in the organisation of the Golgi apparatus. Cell Motil Cytoskel 15: 67 - 70CrossRefGoogle Scholar
  11. Lee G, Cowan N, Kirschner M (1988) The primary structure and heterogeneity of tau protein from mouse brain. Science 239: 285 - 288PubMedCrossRefGoogle Scholar
  12. Lewis SA, Wang DS, Cowan NJ (1988) Microtubule-associated protein MAP2 shares a microtubule binding motif with tau protein. Science 242: 936 - 939PubMedCrossRefGoogle Scholar
  13. Lupas A, Van Dyke M, Stock J (1991) Predicting coiled coils from protein sequences. Science 252: 1162 - 1164PubMedCrossRefGoogle Scholar
  14. Mithieux G, Auderbet C, Rousset B (1988) Association of purified thyroid lysosomes to reconstituted microtubules. Biochim Biophys Acta 969: 121 - 130PubMedCrossRefGoogle Scholar
  15. Mithieux G, Rousset B (1989) Identification of a lysosome membrane protein which could mediate ATP-dependent stable association of lysosomes to microtubules. J Biol Chem 264: 4664 - 4668PubMedGoogle Scholar
  16. Noble M, Lewis SA, Cowan NJ (1989) The microtubule binding domain of microtubule-associated protein MAP1B contains a repeated sequence motif unrelated to that of MAP2 and tau. J Cell Biol 109: 3367 - 3376PubMedCrossRefGoogle Scholar
  17. Parton RG, Dotti CG, Bacallao R, Kurtz I, Simons K, Prydz K. (1991) pH-induced microtubule-dependent redistribution of late endosomes in neuronal and epithelial cells. J Cell Biol 113: 261 - 274Google Scholar
  18. Pierre P, Scheel J, Rickard JE, Kreis TE (1992) CLIP-170 links endocytic vesicles to microtubules. Cell 70, in pressGoogle Scholar
  19. Pratt MM (1986) Stable complexes of axoplasmic vesicles and microtubules: protein composition and ATP ase activity. J Cell Biol 103: 957 - 968PubMedCrossRefGoogle Scholar
  20. Rickard JE, Kreis TE (1990) Identification of a novel nucleotide-sensitive microtubule-binding protein in He La cells. J Cell Biol 110: 1623 - 1633PubMedCrossRefGoogle Scholar
  21. Rickard JE, Kreis TE (1991) Binding of pp170 to microtubules is regulated by phosphorylation. J Biol Chem 266: 17597 - 17605PubMedGoogle Scholar
  22. Scheel J, Kreis TE (1991) Motor protein independent binding of endocytic carrier vesicles to microtubules in vitro. J Biol Chem 266: 18141 - 18148PubMedGoogle Scholar
  23. Schliwa M (1989) Head and tail. Cell 56: 719 - 720CrossRefGoogle Scholar
  24. Schnapp BJ, Reese TS (1989) Dynein is the motor for retrograde axonal transport of organelles. Proc Natl Acad Sci USA 86: 1548 - 1552PubMedCrossRefGoogle Scholar
  25. Schroer TA, Sheetz MP (1991a) Functions of microtubule-based motors. Annu Rev Physiol 53: 629 - 652PubMedCrossRefGoogle Scholar
  26. Schroer TA, Sheetz MP (1991b) Two activators of microtubule-based vesicle transport. J Cell Biol 115: 1309 - 1318PubMedCrossRefGoogle Scholar
  27. Schroer TA, Steuer ER, Sheetz MP (1989) Cytoplasmic dynein is a minus end-directed motor for membranous organelles. Cell 56: 937 - 946PubMedCrossRefGoogle Scholar
  28. Swaroop A, Swaroop M, Garen A (1987) Sequence analysis of the complete cDNA and encoded polypeptide for the Glued gene of Drosophila melanogaster. Proc Natl Acad Sci USA 84: 6501 - 6505PubMedCrossRefGoogle Scholar
  29. Trueheart J, Boeke JD, Fink G (1987) Two genes required for cell fusion during cell conjugation: Evidence for a pheromone-induced surfaceGoogle Scholar
  30. protein. Mol Cell Biol 7: 2316-2328Google Scholar
  31. Vale RD (1992) Motor proteins. In Guidebook to the Cytoskeletal and Motor Proteins. TE Kreis, RD Vale, eds. (Oxford University Press), in pressGoogle Scholar
  32. Vale RD, Reese TS, Sheetz MP (1985) Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42: 39 - 50PubMedCrossRefGoogle Scholar
  33. Vallee RB, Shpetner HS (1990) Motor proteins of cytoplasmic microtubules. Annu Rev Biochem 59: 909 - 932PubMedCrossRefGoogle Scholar
  34. van der Sluijs P, Bennett MK, Anthony C, Simons K, Kreis TE (1990) Binding of exocytic vesicles from MDCK cells to microtubules in vitro. J Cell Sci 95: 545 - 553PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. Scheel
    • 1
  • J. E. Rickard
    • 1
  • P. Pierre
    • 1
  • D. Hennig
    • 1
  • P. I. Karecla
    • 1
  • R. Pepperkok
    • 1
  • B. Joggerst-Thomalla
    • 1
  • A. Sawyer
    • 1
  • R. G. Parton
    • 1
  • T. E. Kreis
    • 1
  1. 1.European Molecular Biology LaboratoryHeidelbergGermany

Personalised recommendations