Advertisement

Defining the Retention Signal in a Model Golgi Membrane Protein

  • C. E. Machamer
  • M. G. Grim
  • A. Esquela
  • K. Ryan
  • A. M. Swift
Conference paper
Part of the NATO ASI Series book series (volume 74)

Abstract

Specific sequences found in resident proteins of the endoplasmic reticulum (ER) and Golgi complex are believed to direct retention of these proteins in the appropriate compartment of the exocytotic pathway. Such “retention signals” have been identified at the carboxy-termini of both lumenal and membrane-bound ER resident proteins (reviewed by Pelham, 1991). We have been studying the targeting of Golgi membrane proteins using the E1 glycoprotein from the avian infectious bronchitis virus (IBV) as a model protein. This protein is targeted to cis Golgi membranes when expressed from cDNA in animal cells (Machamer et al, 1990). We previously determined that the first of the three membrane-spanning domains of the El protein contained Golgi targeting information (Machamer and Rose, 1987; Swift and Machamer, 1991). This first membrane-spanning domain (“m1”) can retain a plasma membrane protein (the vesicular stomatitis virus G protein) in the Golgi complex when inserted in place of the normal transmembrane domain. The chimeric protein (“Gm1”) is retained in the early Golgi complex suggesting that the ml domain is necessary and sufficient for the targeting of the IBV El protein to the cis Golgi complex (Swift and Machamer, 1991).

Keywords

Golgi Complex Vesicular Stomatitis Virus Infectious Bronchitis Virus Retention Signal Indirect Immunofluorescence Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki D, Lee N, Yamaguchi N, Dubois C, Fukuda MN (1992) Proc Natl Acad Sci USA 89: 4319–4323PubMedCrossRefGoogle Scholar
  2. Colley KJ, Lee EU, Paulson JC (1992) J Biol Chem 267: 7784–7793PubMedGoogle Scholar
  3. Machamer CE (1991) Trends Cell Biol 1: 141–144PubMedCrossRefGoogle Scholar
  4. Machamer CE, Mentone SA, Rose JK, Farquhar MG (1990) Proc Natl Acad Sci USA 87: 6944–6948PubMedCrossRefGoogle Scholar
  5. Machamer CE, Rose JK (1987) J Cell Biol 105: 1205–1214PubMedCrossRefGoogle Scholar
  6. Munro S (1991) EMBO J 10: 3577–3588PubMedGoogle Scholar
  7. Nilsson T, Lucocq JM, Mackay D, Warren G (1991) EMBO J 10:3567–3575 Pelham HRB (1991) Curr Opin Cell Biol 3: 585–591Google Scholar
  8. Russo RN, Shaper NL, Taatjes DJ, Shaper JH (1992) J Biol Chem 267:9241–9247 Swift AM, Machamer CE (1991) J Cell Biol 115: 19–30Google Scholar
  9. Tang BL, Wong SH, Low SH, Hong W (1992) J Biol Chem 267:10122–10126 Teasdale RD, D’Agostaro G, Gleeson PA (1992) J Biol Chem 267:4084–4096 Wong SH, Low SH, Hong W (1992) J Cell Biol 117: 245–25Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • C. E. Machamer
    • 1
  • M. G. Grim
    • 1
  • A. Esquela
    • 1
  • K. Ryan
    • 1
  • A. M. Swift
    • 1
  1. 1.Department of Cell Biology and AnatomyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations