Skip to main content

Transgenic Models of Chronic Arthritis and of Systemic Tumour Necrosis Factor-Mediated Disease in Mice Expressing Human Tumour Necrosis Factor

  • Conference paper
Transgenic Animals as Model Systems for Human Diseases

Part of the book series: Schering Foundation Workshop ((SCHERING FOUND,volume 6))

  • 58 Accesses

Abstract

Tumour necrosis factor (TNF-α/cachectin, TNF) was discovered originally as a factor displaying cytotoxic/cytostatic effects on transformed cells in vitro and necrotizing activity on certain transplantable tumours in vivo (Carswell et al. 1975). In later studies, TNF was shown to be the primary mediator of wasting accompanying chronic invasive diseases (Beutler et al. 1985; Tracey et al. 1986). Acting in concert with other members of the cytokine network, TNF has now been clearly established as a central regulator of inflammation and immunity, mainly

Table 1. In vivo activities of TNF — context, rate and duration of TNF — synthesis

Homeostasis

Differentiation — tissue remodelling

Induction of cytokine cascades — synergy

Inflammation

Cellular immunity — infectious diseases

Cytotoxicity — tissue destruction

Vascular thrombosis and tumour necrosis

Cachexia and wasting toxicity

Shock and death

by modulating the functional state of cells that participate in such processes (reviewed by Beutler and Cerami 1989; Old 1990). For example, it has been shown that TNF augments the cytotoxicity of macrophages (Esparza et al. 1987), induces neutrophil adhesion and activation (Gamble et al. 1985) and regulates T and B cell growth and differentiation (Shalaby et al. 1988). The cell-specific effects of TNF are also exerted in a number of nonimmune cell types. The hemostatic properties of vascular endothelial cells are found to be modulated by TNF which induces the production of procoagulant activity (Nawroth and Stern 1986) and enhances the expression of adhesion molecules that bind neutrophils and monocytes (Gamble et al. 1985). Moreover, TNF is shown to be a growth factor for normal fibroblasts (Vilcek et al. 1986) and thymocytes (Ranges et al. 1988) and to interfere with the metabolism of adipocytes (Semb et al. 1987). In response to TNF many cell types are found to increase the production of several other factors, including IL-6, IL-1, colony stimulating factors, collagenase, PGE2, c fos, c-myc and histocompatibility antigens. Fine tuning of such circuits is very important to the defence of the host and to the restoration of homeostasis in the body following a microbial infection or a tissue injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beutler B, Cerami A (1989) The biology of cachectin/TNF- a primary mediator of the host response. Ann Rev Immunol 7: 625–655

    Article  Google Scholar 

  • Beutler B, Krochin N, Milsark IW, Luedke C, Cerami A (1986) Control of cachectin (tumor necrosis factor) synthesis: mechanisms of endotoxin resistance. Science 232: 977–980

    Article  Google Scholar 

  • Brockhaus M, Schoenfeld HJ, Schlaeger EJ, Hunziker W, Lesslauer W, Loetcher H (1990) Identification of two types of tumor necrosis factor receptors on human cell lines by monoclonal antibodies. Proc Natl Acad Sci USA 87: 3127–3131

    Article  Google Scholar 

  • Buchan G, Barrett K, Turner M, Chantry D, Maini RN, Feldmann M (1988) Interleukin-1 and tumour necrosis factor mRNA expression in rheumatoid arthritis: prolonged production of IL-la. Clin Exp Immunol 73: 449–455

    Google Scholar 

  • Butler DM, Piccoli DS, Hart PH, Hamilton JA (1988) Stimulation of human synovial fibroblast DNA synthesis by recombinant human cytokines. J Rheumatology 15: 1463–1470

    Google Scholar 

  • Caput D, Beutler B, Hartog K, Thayer R, Shimer SB, Cerami A (1986) Identification of a common nucleotide sequence in the 3’-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci USA 83: 1670–1674

    Article  Google Scholar 

  • Carswell E, Old L, Cassel R, Green S, Fiore N, Williamson B (1975) An endotoxin serum factor that causes necrosis of tumours. Proc Natl Acad Sci USA 72: 36–66

    Article  Google Scholar 

  • Engelman H, Aderka D, Rubinstein M, Rotman D, Wallach D (1989) A tumor necrosis factor-binding protein purified to homogeneity from human urine protects cells from tumor necrosis factor toxicity. J Biol Chem 264: 11974–11980

    Google Scholar 

  • Esparza I, Mannel D, Ruppel A, Falk W, Krammer PH (1987) Interferongamma (IFN-y) and lymphotoxin (LT) or tumor necrosis factor ( TNF) synergize to activate macrophages for tumoricidal and schistosomulicidal functions. Lymphokine Res 6: 1715.

    Google Scholar 

  • Gamble JR, Harlan JM, Klebanoff SJ, Lopez AF, Vadas MA (1985) Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci USA 82: 8667–8671

    Article  Google Scholar 

  • Gitter BD, Labus JM, Lees SL, Scheetz ME (1989) Characteristics of human synovial fibroblast activation by IL-113 and TNFa. Immunology 66: 196–200

    Google Scholar 

  • Grau GE, Piguet PF, Vassali P, Lambert P-H (1989) Tumor necrosis factor and other cytokines in cerebral malaria: experimental and clinical data Immunol 112: 49–70

    Google Scholar 

  • Greaves DR, Wilson FD, Lang G, Kioussis D (1989) Human CD2 3’-flanking sequences confer high-level, T cell specific, position independent gene expression in transgenic mice. Cell 56: 979–986

    Google Scholar 

  • Hammer RE, Malka SD, Richardson JA, Tang JP, Taurog JD (1990) Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human 132m: an animal model of HLA-B27-associated human disorders. Cell 63: 1099–1112

    Article  Google Scholar 

  • Han J, Brown T, Beutler B (1990) Endotoxin-responsive sequences control cachectin/tumor necrosis factor at the translational level. J Exp Med 171: 465–475

    Article  Google Scholar 

  • Hang LM, Theofilopoulos AN, Dixon Ft (1982) A spontaneous rheumatoid arthritis-like disease in MRL/1 mice. J Exp Med 155: 1690–1701

    Article  Google Scholar 

  • Held W, MacDonald HR, Weissman IL, Hess MW, Mueller C (1990) Genes encoding tumor necrosis factor a and granzyme A are expressed during development of autoimmune diabetes. Proc Natl Acad Sci USA 7: 2239–2243

    Article  Google Scholar 

  • Husby G, Williams RC Jr (1988) Synovial localization of tumor necrosis factor in patients with rheumatoid arthritis. J Autoimmun 1: 363–371

    Article  Google Scholar 

  • Iwakura Y, Tosu M, Yoshida E, Takiguchi M, Sato K, Kitajima I, Nishioka K, Yamamoto K, Takeda T, Hatanaka M, Yamamoto H, Sekiguchi T (1991) Induction of inflammatory arthropathy resembling rheumatoid arthritis in mice transgenic for HTLV-I. Science 253: 1026–1028

    Article  Google Scholar 

  • Jasin HE (1988) Chronic arthritis in rabbits. Meth Enzymol 162: 379–385

    Article  Google Scholar 

  • Jue DM, Sherry B, Luedke C, Manogue KR, Cerami A (1990) Processing of newly synthesized cachectin/tumor necrosis factor in endotoxin stimulated macrophages. Biochemistry 29: 8371–8377

    Article  Google Scholar 

  • Keffer, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G (1991) Transgenic mice expressing human tumor necrosis factor: a predictive genetic model of arthritis. EMBO J 13: 4025–4031

    Google Scholar 

  • Kinkhabwala M, Sehajpal P, Skolnik E, Smith D, Sharma VK, Vlassara H, Cerami A, Suthanthiran M (1990) A novel addition to the T cell repertory; cell surface expression of tumor necrosis factor/cachectin by activated normal human T cells. J Exp Med 171: 941–946

    Article  Google Scholar 

  • Kohno T, Brewer MT, Baker SL, Schwartz PE, King MW, Hale KK, Squires CH, Thompson RC, Vannice JL (1990) A second tumor necrosis factor receptor gene product can shed a naturally occuring tumor necrosis factor inhibitor. Proc Natl Acad Sci USA 87: 8331–8335

    Article  Google Scholar 

  • Kriegler M, Perez C, DeFay K, Albert I, Lu SD (1988) A novel form of TNF/cachectin is a cell surface cytotoxic transmembrane protein: Ramifications for the complex physiology of TNF. Cell 53: 45–53

    Google Scholar 

  • Kruys V, Matinx O, Shaw G, Deschamps J, Huez G (1989) Translational blockade imposed by cytokine-derived UA-rich sequences. Science 245: 852–855

    Article  Google Scholar 

  • Lewis M, Tartaglia TA, Lee A, Bennett GL, Rice GC, Wong GHW, Chen EY, Goeddel DV (1991) Cloning and expression of cDNAs for two distinct murine tumor necrosis factor receptors demonstrate one receptor is species specific. Proc Natl Acad Sci USA 88: 2830–2834

    Article  Google Scholar 

  • Liu CC, Detmers PA, Jiang S, Young JD-E (1989) Identification and characterization of a membrane-bound cytotoxin of murine cytolytic lymphocytes that is related to tumor necrosis factor/cachectin. Proc Natl Acad Sci USA 86: 3286–3290

    Article  Google Scholar 

  • Luettig B, Decker T, Lohmann-Matthes ML (1989) Evidence for the existence of two forms of membrane tumor necrosis factor: an integral protein and a molecule attached to its receptor. J Immunol 143: 4034–4038

    Google Scholar 

  • Macnaul KL, Hutchinson NI, Parsons JN, Bayne EK, Tocci MJ (1990) Analysis of IL-1 and TNF-a gene expression in human rheumatoid synoviocytes and normal monocytes by in situ hybridization. J Immunol 145: 4154–4166

    Google Scholar 

  • Nawroth PP, Stern DM (1986) Modulation of endothelial cell hemostatic properties by tumor necrosis factor. J Exp Med 163: 740–745

    Article  Google Scholar 

  • Old LJ (1990) Tumor necrosis factor. In: Bonavida B, Granger G (eds) Tumor Necrosis Factor: Structure, Mechanism of Action, Role in Disease and Therapy. Basel, Karger, pp 1–30

    Google Scholar 

  • Oliff A, Defeo-Jones D, Boyer M, Martinez D, Kiefer D, Vuocolo G, Wolfe A, Socher SH (1987) Tumors secreting human TNF/cachectin induce cachexia in mice. Celi 50: 555–563

    Article  Google Scholar 

  • Osborn L, Kunkel S, Nabel GJ (1989) Tumor necrosis factor a and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor KB. Proc Natl Acad Sci USA 86: 2336–2340

    Article  Google Scholar 

  • Peck R, Brockhaus M, Frey JR (1989) Cell surface tumor necrosis factor ( TNF) acounts for monocyte-and lymphocyte-mediated killing of TNF-resistant target cells. Cell Immunol 122: 1–10

    Google Scholar 

  • Perez C, Albert I, DeFay K, Zachariades N, Gooding L, Kriegler M (1990) A non-secretable cell surface mutant of tumour necrosis factor ( TNF) kills by cell to cell contact. Cell 63: 251–258

    Google Scholar 

  • Piguet PF, Grau GE, Allet B, Vassalli P (1987) Tumor necrosis factor/cachectin is an effector of skin and gut lesions of the acute phase of graft-vs.-host disease. J Exp Med 166: 1280–1289

    Article  Google Scholar 

  • Porteu F, Nathan C (1990) Shedding of tumor necrosis factor receptors by activated human neutrophils. J Exp Med 172: 599–607

    Article  Google Scholar 

  • Ranges GE, Zlotnik A, Espevik T, Dinarello CA, Cerami A, Palladino MAJr (1988) Tumor necrosis factor a/cachectin is a growth factor for thymocytes. J Exp Med 167: 1472–1478

    Article  Google Scholar 

  • Ridge SC, Oronsky AL, Kerwar SS (1988a) Type II collagen-induced arthritis in rats. Meth Enzymol 162: 355–360

    Article  Google Scholar 

  • Ridge SC, Zabriskie JB, Oronsky AL, Kerwar SS (1988b) Streptococcal cell wall-induced arthritis in rats. Meth Enzymol 162: 373–379

    Article  Google Scholar 

  • Saxne T, Palladino MA Jr, Heinegard D, Talal N, Wollheim FA (1988) Detection of tumor necrosis factor a but not tumor necrosis factor [3 in rheumatoid arthritis synovial fluid and serum. Arthritis and Rheumatism 31: 1041–1045

    Article  Google Scholar 

  • Seckinger P, Isaaz S, Dayer JM (1989) Purification and biologic characterization of a specific tumor necrosis factor-a inhibitor. J Biol Chem 264: 11966–11973

    Google Scholar 

  • Semb H, Peterson J, Tavernier J, Olivecrona T (1987)Multiple effects of tumor necrosis factor on lipoprotein lipase in vivo. J Biol Chem 262: 8390–8394

    Google Scholar 

  • Shalaby MR, Espevic T, Rice GC, Ammann AJ, Figari IS, Ranges GE, Palladino MAJr (1988) The involvement of human tumor necrosis factors-a and -(3 in the mixed lymphocyte reaction. J Immunol 141: 499–503

    Google Scholar 

  • Shaw G, Kamen R (1986) A conserved AU sequence from the 3’-untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46: 659–667

    Article  Google Scholar 

  • Smith R, Baglioni C (1989) Multimeric structure of the tumor necrosis factor receptor of HeLa cells. J Biol Chem 264: 14646–14652

    Google Scholar 

  • Tartaglia LA, Weber RF, Figari IS, Reynolds C, Palladino MA, Goeddel DV (1991) The two different receptors for tumor necrosis factor mediate distinct cellular responses. Proc Natl Acad Sci USA 88: 9292–9296

    Article  Google Scholar 

  • Taurog JD, Argentiery DC, McReynolds RA (1988) Adjuvant arthritis. Meth Enzymol 162: 339–355

    Article  Google Scholar 

  • Tracey KJ, Beutler B, Lowry SF, Merryweather J, Wolpe S, Milsark 1W, Hariri RJ, Fahey III TJ, Zentella A, Albert JD, Shires GT, Cerami A (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234: 470–474

    Google Scholar 

  • Trentham DE (1982) Collagen arthritis as a relevant model for rheumatoid arthritis. Arthr. Rheumatism 25: 911–915

    Article  Google Scholar 

  • Vilcek J, Palombella VJ, Henriksen-DeStefano D, Swenson C, Feinman R, Hirai M, Tsujimoto M (1986) Fibroblast growth enhancing activity of tumor necrosis factor and its relationship to other polypeptide growth factors. J Exp Med 163: 632–643

    Article  Google Scholar 

  • Wooley PH (1988) Collagen-induced arthritis in the mouse. Meth Enzymol 162: 361–373

    Article  Google Scholar 

  • Yocum DE, Esparza L, Dubry S, Benjamin JB, Volz R, Scuderi P (1989) Characteristics of tumor necrosis factor production in rheumatoid arthritis. Cellular Immunol 122: 131–145

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kollias, G.A. (1993). Transgenic Models of Chronic Arthritis and of Systemic Tumour Necrosis Factor-Mediated Disease in Mice Expressing Human Tumour Necrosis Factor. In: Wagner, E.F., Theuring, F. (eds) Transgenic Animals as Model Systems for Human Diseases. Schering Foundation Workshop, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02925-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02925-1_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02927-5

  • Online ISBN: 978-3-662-02925-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics