Skip to main content

The Aminophospholipid Transporter from Human Red Blood Cells

  • Conference paper
Phospholipids and Signal Transmission

Part of the book series: Nato ASI Series ((volume 70))

  • 69 Accesses

Abstract

Nearly twenty years ago, Bretscher (1972) proposed that the distribution of phospholipids in the erythrocyte membrane is asymmetric. It is now well established that certain phospholipids preferentially reside in either the inner or outer membrane leaflets of most cell types. For example, phosphatidylcholine and sphingomyelin are predominantly localized in the plasma membrane’s outer leaflet, while phosphatidyl inositol and the aminophospholipids, phosphatidylethanolamine (PE) and phosphatidyl serine (PS), are primarily localized in the inner leaflet (Gordesky et al., 1975; Verkleij et al., 1973). Recent studies have provided convincing evidence that membrane lipid asymmetry is generated and probably maintained by specific transport proteins or ‘flippases’ (Backer and Dawidowicz, 1987; Bishop and Bell, 1985). One of these transport proteins, the aminophospholipid transporter, is responsible for the movement of PS and PE from the outer leaflet to the inner leaflet of the erythrocyte membrane (Seigneuret and Devaux, 1984; Daleke and Huestis, 1985; Tilley et al., 1986; Connor and Schroit, 1987).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre P, Cartron JP (1991) Molecular biology of the Rh antigens. Blood 78:551–563

    PubMed  CAS  Google Scholar 

  • Avent ND, Ridgwell K, Tanner MJA, Anstee DJ (1990) cDNA cloning of a 30 kDa erythrocyte membrane protein associated with Rh (Rhesus) blood group antigen expression. Biochem J 271:821–825

    PubMed  CAS  Google Scholar 

  • Backer JM, Dawidowicz EA (1987) Reconstitution of a phospholipid flippase from rat liver microsomes. Nature 327:341–343

    Article  PubMed  Google Scholar 

  • Bergmann WL, Dresssler V, Haest CWM, Deuticke B (1984) Reorientation rates and asymmetry of distribution of lysophospholipids between the inner and outer leaflet of the erythrocyte membrane. Biochim Biophys Acta 772:328–336

    Article  PubMed  CAS  Google Scholar 

  • Bishop WR, Bell RM (1985) Assembly of the endoplasmic reticulum phospholipid bilayer: The phosphatidylcholine transporter. Cell 42:51–60

    Article  PubMed  CAS  Google Scholar 

  • Blanchard D, Bloy C, Hermand P, Cartron JP, Saboori A, Smith BL, Agre P (1988) Two-dimensional iodopeptide mapping demonstrates erythrocyte Rh D, c, and E polypeptides are structurally homologous but nonidentical. Blood 72:1424–1427

    PubMed  CAS  Google Scholar 

  • Bloy C, Blanchard D, Dahr W, Beyreuther K, Salmon C, Cartron JP (1988) Determination of the N-terminal sequence of human red cell Rh(D) polypeptide and demonstration that the Rh(D), (c) and (E) antigens are carried by distinct polypeptide chains. Blood 72:661–666

    PubMed  CAS  Google Scholar 

  • Bloy C, Blanchard D, Lambin P, Goossens D, Rouger P, Salmon C, Cartron JP (1987) Human monoclonal antibody against Rh(D) antigen: Partial characterization of Rh(D) polypeptide from human erythrocytes. Blood 69:1491–1497

    PubMed  CAS  Google Scholar 

  • Bloy C, Blanchard D, Hermand P, Kordowicz M, Sonneborn HH, Cartron, JP (1989) Properties of the blood group LW glycoprotein and preliminary comparison with Rh proteins. Mol Immunol 26:1013–1019

    Article  PubMed  CAS  Google Scholar 

  • Bretscher MS (1972) Asymmetric lipid bilayer structure for biological membranes. Nature (London) New Biol 236:11–12

    Article  CAS  Google Scholar 

  • Cherif-Zahar B, Bloy C, Le Van Kim C, Blanchard D, Bailly P, Hermand P, Salmon C, Cartron JP, Colin Y (1990) Molecular cloning and protein structure of a human blood group Rh polypeptide. Proc Nat Acad Sei USA 87:6243–6247

    Article  CAS  Google Scholar 

  • Connor J, Schroit AJ (1987) Determination of lipid asymmetry in human red cells by resonance energy transfer. Biochemistry 26:5099–5105

    Article  PubMed  CAS  Google Scholar 

  • Connor J, Schroit AJ (1988) Transbilayer movement of PS in erythrocytes: Inhibition of transport and preferential labeling of a 31,000 dal ton protein by sulfhydryl reactive reagents. Biochemistry 27:848–851

    Article  PubMed  CAS  Google Scholar 

  • Connor, J, Schroit AJ (1990) Aminophospholipid translocation in erythrocytes: Evidence for the involvement of a specific transporter and an endofacial protein. Biochemistry 29:37–43

    Article  PubMed  CAS  Google Scholar 

  • Daleke DL, Huestis WH (1985) Incorporation and translocation of aminophospholipids in human erythrocytes. Biochemistry 23:5406–5416

    Article  Google Scholar 

  • de Vetten MP, Agre P (1988) The Rh polypeptide is a major fatty acid acylated erythrocyte membrane protein. J Biol Chem 263:18193–18196

    PubMed  Google Scholar 

  • Fischbarg J, Kuang K, Hirsch J, Lecuona S, Rogozinski L, Silverstein SC, Loike J (1989) Evidence that the glucose transporter serves as a water channel in J774 macrophages. Proc Natl Acad Sci USA 86:8397–8401

    Article  PubMed  CAS  Google Scholar 

  • Forgac M, Cantley L (1984) The plasma membrane (Mg2+)-dependent adenosine triphosphatase from the human erythrocyte is not an ion pump. J Membr Biol 80:185–190

    Article  PubMed  CAS  Google Scholar 

  • Gahmberg CG (1982) Molecular identification of the human Rho(D) antigen. FEBS Lett 140:93–97

    Article  PubMed  CAS  Google Scholar 

  • Gahmberg CG (1983) Molecular characterization of the human red cell Rho(D) antigen. EMB0 J 2:223–228

    CAS  Google Scholar 

  • Gahmberg CG, Karhi KK (1984) Association of Rho(D) polypeptides with the membrane skeleton in Rho(D)-positive human red cells. J Immunol 133:334–337

    PubMed  CAS  Google Scholar 

  • Gordesky SE, Marinetti GV, Love R (1975) The reaction of chemical probes with the erythrocyte membrane. J Memb Biol 20:111–132

    Article  CAS  Google Scholar 

  • Green FA (1967) Erythrocyte membrane sulfhydryl groups and Rh antigen activity. Immunochemistry 4:247–257

    Article  PubMed  CAS  Google Scholar 

  • Green FA (1983) The mode of attenuation of erythrocyte membrane Rho(D) antigen activity by 5,5′-dithiobis-(2-nitrobenzoic acid) and protection against loss of activity by bound anti-Rho(D) antibody. Mol Immunol 20:769–775

    Article  PubMed  CAS  Google Scholar 

  • Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    Article  PubMed  CAS  Google Scholar 

  • Hughes-Jones NC, Bloy C, Gorick B, Blanchard D, Doinel C, Rouger P, Cartron JP (1988) Evidence that the c, D and E epitopes of the human Rh blood group system are on separate polypeptide molecules. Mol Immunol 25:931–936

    Article  PubMed  CAS  Google Scholar 

  • Krahmer M, Prohaska R (1987) Characterization of human red cell Rh (Rhesus-) specific polypeptides by limited proteolysis. FEBS Lett 226:105–108

    Article  PubMed  CAS  Google Scholar 

  • Martin OC, Pagano RE (1987) Transbilayer movement of fluorescent analogs of phosphatidyl serine and phosphatidylethanolamine at the plasma membrane of cultured cells. J Biol Chem 262:5890–5898

    PubMed  CAS  Google Scholar 

  • Moore S, Green C (1987) The identification of specific Rhesus polypeptide blood group ABH active glycoprotein complexes in the human red-cell membrane. Biochem J 244:735–741

    PubMed  CAS  Google Scholar 

  • Moore S, Woodrow CF, McClelland DBL (1982) Isolation of membrane components associated with human red cell antigens Rho(D), (c) (E), and Fya. Nature (London) 295:529–531

    Article  CAS  Google Scholar 

  • Morrot G, Herve P, Zachowski A, Felmann P, Devaux PF (1989) Aminophospholipid translocase of human erythrocytes: Phospholipid substrate specificity and effect of cholesterol. Biochemistry 28:3456–3462

    Article  PubMed  CAS  Google Scholar 

  • Morrot G, Zachowski A, Devaux PF (1990) Partial purification and characterization of the human erythrocyte Mg -ATPase. A candidate minophospholipidtranslocase. FEBS Lett 266:29–32

    Article  PubMed  CAS  Google Scholar 

  • Paradis G, Bazin R, Lemieux R (1986) Protective effect of the membrane skeleton on the immunologic reactivity of the human red cell Rho(D) antigen. J Immunol 137:240–244

    PubMed  CAS  Google Scholar 

  • Ridgwell K, Tanner MJA, Anstee DJ (1984) The Rhesus(D) polypeptide is linked to the human erythrocyte cytoskeleton. FEBS Lett 174:7–10

    Article  PubMed  CAS  Google Scholar 

  • Saboori AM, Smith BL, Agre P (1988) Polymorphism in the Mr 32,000 Rh protein purified from Rh(D) positive and negative erythrocytes. Proc Natl Acad Sci USA 85:4042–4045

    Article  PubMed  CAS  Google Scholar 

  • Schroit AJ, Bloy C, Connor J, Cartron JP (1990) Involvement of the Rh blood group polypeptides in the maintenance of aminophospholipid asymmetry. Biochemistry 29:10303–10306

    Article  PubMed  CAS  Google Scholar 

  • Schroit AJ, Madsen J, Ruoho AE (1987) Radioiodinated, photoactivatable phosphatidylcholine and phosphatidylserine: Transfer properties and differential photoreactive interaction with human erythrocyte membrane proteins. Biochemistry 26:1812–1819

    Article  PubMed  CAS  Google Scholar 

  • Schroit AJ, Zwaal RFA (1991) Transbilayer movement of phospholipids in red cell and platelet membranes. Biochim Biophys Acta (in press)

    Google Scholar 

  • Seigneuret M, Devaux PF (1984) ATP-dependent asymmetric distribution of spin-labeled phospholipids in the erythrocyte membranes relation to shape changes. Proc Natl Acad Sci USA 81:3751–3755

    Article  PubMed  CAS  Google Scholar 

  • Smith RE, Daleke DL (1990) PS transport in Rh null erythrocytes. Blood 76:1021–1027

    PubMed  CAS  Google Scholar 

  • Suyama K, Goldstein J (1988) Antibody produced against isolated Rh(D) polypeptide reacts with other Rh-related antigens. Blood 72:1622–1626

    PubMed  CAS  Google Scholar 

  • Suyama K, Goldstein J, Aebersold R, Kent S (1991) Regarding the size of Rh proteins. Blood 77:411 (letter)

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Schroit AJ (1986) Calcium/phosphate induced immobilization of fluorescent PS in synthetic bilayer membranes: Inhibition of lipid transfer between vesicles. Biochemistry 25:2141–2148

    Article  PubMed  CAS  Google Scholar 

  • Tilley L, Cribier S, Roelofsen B, Op den Kamp JAF, van Deenen LLM (1986) ATP-dependent translocation of aminophospholipids across the human erythrocyte membrane. FEBS Lett 194:21–27

    Article  PubMed  CAS  Google Scholar 

  • Verkleij AJ, Zwaal RFA, Roelofsen B, Comfurius P, Kasteiijn D, van Deenen LLM (1973) The asymmetric distribution of phospholipids in the human red blood cell membrane. Biochim Biophys Acta 323:178–193

    Article  PubMed  CAS  Google Scholar 

  • Victoria EJ, Branks MJ, Masouredis SP (1986) Rh antigen immunoreactivity after histidine modification. Mol Immunol 23:1039–1044

    Article  PubMed  CAS  Google Scholar 

  • Zachowski A, Devaux PF (1990) Transmembrane movement of lipids. Experientia 46:644–656

    Article  PubMed  CAS  Google Scholar 

  • Zachowski A, Favre E, Cribier S, Herve P, Devaux PF (1986) Outside-inside translocation of aminophospholipids in the human erythrocyte membrane is mediated by a specific enzyme. Biochemistry 25:2585–2590

    Article  PubMed  CAS  Google Scholar 

  • Zachowski A, Herrmann A, Paraf A, Devaux PF (1987) Phospholipid outside-inside translocation in lymphocyte plasma membranes is a protein-mediated phenomenon. Biochim Biophys Acta 897:197–200

    Article  PubMed  CAS  Google Scholar 

  • Zachowski A, Henry JP, Devaux PF (1989) Control of transmembrane lipid asymmetry in chromaffin granules by an ATP-dependent protein. Nature 340:75–76

    Article  PubMed  CAS  Google Scholar 

  • Zachowski A, Morot Gaudry-Talarmain YM (1990) Phospholipid transverse diffusion in synaptosomes: Evidence for the involvement of the aminophospholipid translocase. J Neurochem 55:1352–1356

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Coderre, P.E., Schroit, A.J. (1993). The Aminophospholipid Transporter from Human Red Blood Cells. In: Massarelli, R., Horrocks, L.A., Kanfer, J.N., Löffelholz, K. (eds) Phospholipids and Signal Transmission. Nato ASI Series, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02922-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02922-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02924-4

  • Online ISBN: 978-3-662-02922-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics