Skip to main content

CDPcholine, CDPethanolamine, Lipid Metabolism and Disorders of the Central Nervous System

  • Conference paper
Phospholipids and Signal Transmission

Part of the book series: Nato ASI Series ((volume 70))

Abstract

CDPamines are essential precursors for the biosynthesis de novo of phosphatidylcholine and phosphatidylethanolamine. The phosphoamine moiety is enzymically transferred to the diacylglycerol or other diradylglycerol by the choline or ethanolami ne specific phosphotransferase. As described in the following sections, CDPamines, especially CDPcholine, have been used to reverse increases in fatty acid levels following ischemia. CDPcholine has been used successfully to treat several types of central nervous system diseases including ischemia, Parkinson disease, cerebrovascular disease, senile dementia, and tardive dyskinesia. CDPcholine effects in these diseases may be related in part to its ability to increase dopamine levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguilar J, Giménez R, Bachs O, Enrich C., Augt J (1983) Cerebral subcellular distribution of CDPcholine and/or its metabolites after oral administration of methyl-14C CDPcholine. Drug Res 33:1051–1053

    CAS  Google Scholar 

  • Alberghina M, Viola M, Serra I, Mistretta A, Giuffrida AM (1981) Effect of CDP-choline on the biosynthesis of phospholipids in brain regions during hypoxic treatment. J Neurosci Res 6:421–433

    Article  PubMed  CAS  Google Scholar 

  • Alemany S, Varela I, Harper JF, Mato JM (1982) Calmodulin regulation of phospholipid and fatty acid methylation by rat liver microsomes. J Biol Chem 257:9249–9251

    PubMed  CAS  Google Scholar 

  • Arranz J, Ganoza C (1983) Treatment of chronic dyskinesia with CDPcholine. Drug Res 33:1071–1073

    CAS  Google Scholar 

  • Arrigoni E, Averet N, Cohadon F (1987) Effects of CDP-choline on phospholipase A2 and cholinephosphotransferase activities following a cryogenic brain injury in the rabbit. Biochem Pharmacol 36:3697–3700

    Article  PubMed  CAS  Google Scholar 

  • Arthur G, Covic L, Wientzek M, Choy PC (1985) Plasmalogenase in hamster heart. Biochim Biophys Acta 833:189–195

    Article  PubMed  CAS  Google Scholar 

  • Augt J, Font E, Sacristan A, Ortiz JA (1983a) Radioactivity incorporated into different cerebral phospholipids after oral administration of 14 C-methyl-CDPcholine. Drug Res 33:1048–1050

    Google Scholar 

  • Augt J, Font E, Sacristan A, Ortiz JA (1983b) Dissimilar effects on acute toxicity studies of CDPcholine and choline. Drug Res 33:1016–1018

    Google Scholar 

  • Augt J, Font E, Sacristan A, Ortiz JA (1983c) Bioavailability of methyl-14C-CDPcholine by oral route. Drug Res 33:1045–1047

    Google Scholar 

  • Binaglia L, Roberti R, Corazzi L, Freysz L, Arienti G, Porcellati G (1985) Evidence for a compartmentation of the enzymes involved in CDPcholine metabolism at membrane level. In: Zappia V, Kennedy EP, Nilsson BI, Galletti P (eds) Novel Biochemical, Pharmacological and Clinical Aspects of Cytidinediphosphocholine. Elsevier, Amsterdam, p 131–136

    Google Scholar 

  • Boismare F, Le Poncin M, Lefrancois J, Lecordier JC (1978) Action of cytidine diphosphocholine on functional and hemodynamic effects of cerebral ischemia in cats. Pharmacology 17:15–20

    Article  PubMed  CAS  Google Scholar 

  • Burlina AP, Galzigna L (1989) Preparazione, proprietà e Potenzialità terapeutiche delia citidin-difosfocolina associata a liposomi. Rivista di Neurologia 59:26–31

    PubMed  CAS  Google Scholar 

  • Centrone G, Ragno G, Calicchio G (1986) Uso delia citicoline ad al ti dosaggi nelle affezioni acute cerebro-vascolari. Min Med 77:371–373

    CAS  Google Scholar 

  • Ciaceri G (1985) Toxicological studies on CDPcholine. In: Zappia V, Kennedy EP, Nilsson BI, Galletti P (eds) Novel Biochemical, Pharmacological and Clinical Aspects of Cytidinediphosphocholine. Elsevier, Amsterdam, p 159–167

    Google Scholar 

  • Clendenon NR, Palayoor ST, Gordon WA (1985) Influence of CDPcholine on ATPase activity in acute experimental spinal cord trauma. In: Zappia V, Kennedy EP, Nilsson BI, Galletii P (eds) Novel Biochemical, Pharmacological and Clinical Aspects of Cytidinediphosphocholine. Elsevier, Amsterdam, p 275–284

    Google Scholar 

  • Cook HW, Vance DE (1985) Evaluation of possible mechanisms of phorbol ester stimulation of phosphatidylcholine synthesis in HeLa cells. Can J Biochem Cell Biol 63:145–151

    Article  PubMed  CAS  Google Scholar 

  • Cubells JM, Hernando C (1988) Clinical trial on the use of cytidine diphosphate choline in Parkinson’s disease. Clin Thera 10:664–671

    CAS  Google Scholar 

  • Damron DS, Dorman RV (1988) [3H]Arachidonic acid metabolism in rat brain minces: Effects of nucleotide triphosphates, CDPcholine and CMP. Neurochem Res 13:777–783

    Article  PubMed  CAS  Google Scholar 

  • Demediuk P, Saunders RD, Anderson DK, Means ED, Horrocks LA (1985) Membrane lipid changes in laminectomized and traumatized cat spinal cord. Proc Natl Acad Sci USA 82:7071–7075

    Article  PubMed  CAS  Google Scholar 

  • Dinsdale JRM, Griffiths GK, Castello J, Maddock J, Ortiz JA, Aylward M (1983a) CDPcholine: repeated oral dose tolerance studies in adult healthy volunteers. Drug Res 33:1061–1065

    CAS  Google Scholar 

  • Dinsdale JRM, Griffiths GK, Rowlands C., Castello J, Ortiz JA, Maddock J, Aylward M (1983b) Pharmacokinetics of 14C CDPcholine. Drug Res 33:1066–1070

    CAS  Google Scholar 

  • Dorman RV, Dabrowiecki Z, DeMedio GE, Porcellati G, Horrocks LA (1982) Effects of cytidine nucleotides on CNS membranes during ischemia. In: Grossman RG, Gildenberg PL (eds) Head Injury: Basic and Clinical Aspects. Raven Press, New York, p 93–101

    Google Scholar 

  • Dorman RV, Dabrowiecki Z, Horrocks LA (1983) Effects of CDPcholine and CDPethanolamine on the alterations in rat brain lipid metabolism induced by global ischemia. J Neurochem 40:276–279

    Article  PubMed  CAS  Google Scholar 

  • Eberhardt R, Birbamer G, Gerstenbrand F, Rainer E, Traegner H (1990) Citicoline in the treatment of Parkinson’s disease. Clin Thera 12:489–495

    CAS  Google Scholar 

  • Fernandez RL (1983) Efficacy and safety of oral CDPcholine: drug surveillance study in 2817 cases. Drug Res 33:1073–1080

    Google Scholar 

  • Freysz L, Golly F, Mykita S, Avola R, Dreyfus H, Massarelli R (1985) Metabolism of neuronal cell cultures: Modification induced by CDPcholine. In: Zappia V, Kennedy EP, Nilsson BI, Galletti P (eds) Novel Biochemical, Pharmacological and Clinical Aspects of Cytidinediphosphocholine. Elsevier, Amsterdam, p 117–129

    Google Scholar 

  • Galletti P, De Rosa M, Nappi MA, Pontoni G, del Piano L, Salluzzo A, Zappia V (1985) Transport and metabolism of double-labelled CDPcholine in mammalian tissues. Biochem Pharmacol 34:4121–4130

    Article  PubMed  CAS  Google Scholar 

  • Giraldi JP, Virno M, Covelli G, Grechi G, De Gregorio F (1989) Therapeutic value of citicoline in the treatment of glaucoma (computerized and automated perimetric investigation). Intl Ophthalm 13:109–112

    Article  Google Scholar 

  • Goldberg WJ, Dorman RV, Horrocks LA (1983) Effects of ischemia and diglycerides on ethanolamine and choline phosphotransferase activities from rat brain. Neurochem Pathol 1:225–234

    CAS  Google Scholar 

  • Goldberg WJ, Dorman RV, Dabrowiecki Z, Horrocks LA (1985) The effects of ischemia and CDPamines on Na+,K+-ATPase and acetylcholinesterase activities in rat brain. Neurochem Pathol 3:237–248

    PubMed  CAS  Google Scholar 

  • Goracci G, Francescangeli E, Mozzi R, Porcellati S, Porcellati G (1985) Regulation of phospholipid metabolism by nucleotides in brain transport of CDPcholine into brain. In: Zappia V, Kennedy EP, Nilsson BI, Galletti P (eds) Novel Biochemical, Pharmacological and Clinical Aspects of Cytidinediphosphocholine. Elsevier, Amsterdam, p 105–116

    Google Scholar 

  • Goracci G, Francescangeli E, Horrocks LA, Porcellati G (1986) A comparison of the reversibility of phosphoethanolamine transferase and phosphocholine transferase in rat brain microsomes. Biochim Biophys Acta 876:387–391

    Article  PubMed  CAS  Google Scholar 

  • Grau T, Romero A, Sacristan A, Ortiz JA (1983) CDPcholine: acute toxicity study. Drug Res 33:1033–1034

    CAS  Google Scholar 

  • Hamdorf G, Cervos-Navarre J (1990) Study of the effects of oral administration of CDPcholine on open-field behaviour under conditions of chronic hypoxia. Drug Res 40:519–522

    CAS  Google Scholar 

  • Hatch GM, Choy PC (1990) Effect of hypoxia on phosphatidylcholine biosynthesis in the isolated hamster heart. Biochem J 268:47–54

    PubMed  CAS  Google Scholar 

  • Horrocks LA, Dorman RV (1985) Prevention by CDPcholine and CDPethanolamine of lipid changes during brain ischemia. In: Zappia V, Kennedy EP, Nilsson BI, Galletti P (eds) Novel Biochemical, Pharmacological and Clinical Aspects of Cytidinediphosphocholine. Elsevier, Amsterdam, p 205–215

    Google Scholar 

  • Kakihana M, Fukuda N, Suno M, Nagaoka A (1988) Effects of CDP-choline on neurologic deficits and cerebral glucose metabolism in a rat model of cerebral ischemia. Stroke 19:217–222

    Article  PubMed  CAS  Google Scholar 

  • Kanoh H, Ohno K (1973) Utilization of endogenous phospholipids by the backreaction of CDP-choline (-ethanolamine): 1,2-diglyceride choline (ethanolamine)-phosphotransferase in rat liver microsomes. Biochim Biophys Acta 306:203–217

    Article  CAS  Google Scholar 

  • Kanoh H, Ohno K (1975) Substrate-selectivity of rat liver microsomal 1,2-diacylglycerol: CDPcholine (ethanolamine) choline (ethanolamine) phosphotransferase in utilizing endogenous substrates. Biochim Biophys Acta 380:199–207

    Article  PubMed  CAS  Google Scholar 

  • Mages F, Rey C., Fonlupt P, Pacheco H (1988) Kinetic and biochemical properties of CTP: choline-phosphate cytidylyltransferase from the rat brain. Eur J Biochem 178:367–372

    Article  PubMed  CAS  Google Scholar 

  • Martinet M, Fonlupt P, Pacheco M (1978) Interaction of CDPcholine with synaptosomal transport of biogenic amines and their precursors in vitro and in vivo in the rat corpus striatum. Experientia 34:1197–1199

    Article  PubMed  CAS  Google Scholar 

  • Masi I, Giani E, Galli C (1986) Effects of CDPcholine on platelet aggregation and the antiaggregatory activity of arterial wall in the rat. Pharm Res Commun 18:273–281

    Article  CAS  Google Scholar 

  • Morikawa S, Taniguchi S, Fujii K, Mori H, Kumada K, Fujiwara M (1987) Preferential synthesis of diacyl and alkenylacyl ethanolamine and choline glycerophospholipids in rabbit platelet membranes. J Biol Chem 262:1213–1217

    PubMed  CAS  Google Scholar 

  • Murphy EJ, Slivka AP, Horrocks LA (1991) Effect of methyl prednisolone and CDPcholine on ischemic infarct volume. Am Soc Neurochem 22:150(Abstract)

    Google Scholar 

  • Ondera H, Iijima K, Kogure K (1986) Mononucleotide metabolism in the rat brain after transient ischemia. J Neurochem 46:1704–1710

    Article  Google Scholar 

  • Paddon HB, Vance DE (1980) Tetradecanoyl-phorbol acetate stimulates phosphatidylcholine biosynthesis in HeLa cells by an increase in the rate of the reaction catalyzed by CTP: phosphocholine cytidylyltransferase. Biochim Biophys Acta 620:636–640

    Article  PubMed  CAS  Google Scholar 

  • Pelech SL, Pritchard PH, Vance DE (1981) cAMP analogues inhibit phosphatidylcholine biosynthesis in cultured rat hepatocytes. J Biol Chem 256:8283–8286

    Google Scholar 

  • Petkov VD, Stancheva SL, Tocuschieva L, Petkov VV (1990) Changes in brain biogenic monoamines induced by the nootropic drugs adafenoxate and meclofenoxate and by citicholine (experiments on rats). Gen Pharmac 21:71–75

    Article  CAS  Google Scholar 

  • Possmayer F, Duwe G, Hahn M, Buchnea D (1977) Acyl specificity of CDPcholine: 1,2-diacylglycerol cholinephosphotransferase in rat lung. Can J Biochem 55:609–617

    Article  PubMed  CAS  Google Scholar 

  • Radominska-Pyrek A, Strosznajder J, Dabrowiecki Z, Chojnacki T, Horrocks LA (1976) Effects of free fatty acids on the enzymic synthesis of diacyl and ether types of choline and ethanolamine phosphoglycerides. J Lipid Res 17:657–662

    PubMed  CAS  Google Scholar 

  • Romero A, Grau T, Sacristan A, Ortiz JA (1983a) Study of subacute toxicity of CDPcholine after 30 days of oral administration to rats. Drug Res 33:1035–1038

    CAS  Google Scholar 

  • Romero A, Grau T, Sacristan A, Ortiz JA (1983b) CDPcholine: 6 month study on toxicity in dogs. Drug Res 33:1038–1042

    CAS  Google Scholar 

  • Romero A, Serratosa J, Sacristan A, Ortiz JA (1983c) High resolution outerradiography in mouse brain 24 h after radiolabeled CDPcholine administration. Drug Res 33:1056–1058

    CAS  Google Scholar 

  • Saligaut C., Daoust M, Moore N, Boismare F (1987) Effects of hypoxia and cytidine (5′) diphosphocholine on the concenrations of dopamine, norepinephrine and metabolites in rat hypothalamus and striatum. Arch Int Pharmacodyn 285:25–33

    PubMed  CAS  Google Scholar 

  • Sanghera JS, Vance DE (1989) Stimulation of CTP: phosphocholine cytidylyltransferase and phosphatidylcholine synthesis by calcium in rat hepatocytes. Biochim Biophys Acta 1003:284–292

    Article  PubMed  CAS  Google Scholar 

  • Serra F, Diaspri GP, Gasbarrini A, Giancane S, Rimondi A, Tame MR, Sakellaridis E, Bernardi M, Gasbarrini G (1990) Effetto della CDPcolina sul decadimento mentale senile. Min Med 81:465–470

    CAS  Google Scholar 

  • Sinforiani E, Trucco M, Pacchetti C., Gualtieri S (1986) Valutazione degli effetti delia citicolina nella malattia cerebro-vascolare cronica. Min Med 77:51–57

    CAS  Google Scholar 

  • Taniguchi S, Morikawa S, Hayashi H, Fujii K, Mori H, Fujiwara M (1986) Effects of Ca2+ on ethanolaminephosphotransferase and cholinephosphotransferase in rabbit platelets. J Biochem 100:485–491

    PubMed  CAS  Google Scholar 

  • Tazaki Y, Sakai F, Otomo E, Kutsuzawa T, Kameyama M, Omae T, Fujishima M, Sakuma A (1988) Treatment of acute cerebral infarction with a choline precursor in a multicenter double-blind placebo-controlled study. Stroke 19:211–216

    Article  PubMed  CAS  Google Scholar 

  • Trovarelli G, DeMedio GE, Montanini I (1982) The influence of CDP-choline on brain lipid metabolism during ischemia. II Farmaco 10:664–668

    Google Scholar 

  • Weber G, Auteri A, Bianciardi G, Fabrini P, Resi L, Salvi M, Toti P, Tanganelli P (1989) Influence of CDPcholine administration on the aortic wall lesions in dietically hypercholesterolaemic rabbits: A morphometric evaluation. Drugs Exptl Clin Res 15:321–323

    CAS  Google Scholar 

  • Woodard DS, Lee T-C, Snyder F (1987) The final step in the de novo biosynthesis of platelet-activating factor. J Biol Chem 262:2520–2527

    PubMed  CAS  Google Scholar 

  • Yamamoto M, Shimizu M, Okamiya H (1990) Pharmacological actions of the new TRH analogue, YM-14673, in rats subjected to cerebral ischemia and anoxia. Euro J Pharm 181:207–214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murphy, E.J., Horrocks, L.A. (1993). CDPcholine, CDPethanolamine, Lipid Metabolism and Disorders of the Central Nervous System. In: Massarelli, R., Horrocks, L.A., Kanfer, J.N., Löffelholz, K. (eds) Phospholipids and Signal Transmission. Nato ASI Series, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02922-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02922-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02924-4

  • Online ISBN: 978-3-662-02922-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics