Skip to main content

The Conversion of Ethanolamine Containing Compounds to Choline Derivatives and Acetylcholine

  • Conference paper
Phospholipids and Signal Transmission

Abstract

One of the main issues in the understanding of the biochemistry and pathology of the brain concerns the mechanisms by which choline (Cho) is supplied to nerve cells. In brain tissue Cho, originating from endogenous synthesis in the liver (methylation of phosphatidylethanolamine) or as free base from the diet (Pardridge and Oldendorf, 1977; Cornford et al., 1978; Wecker and Trommer, 1984; see also Löffelholz, this volume), can be taken up from the blood circulation through the blood brain barrier. The brain itself is, however, capable of producing Cho from endogenous sources (Mozzi et al., 1979; Blusztajn et al., 1979; Crews et al., 1980; Zeisel, 1985; Blusztajn et al., 1987). In contrast to the fluctuating plasma levels, which are directly dependent upon diet, the brain tissue seems to have a homeostatic mechanism that maintains Cho at a steady state level. At low plasma concentrations of Cho there is more Cho exiting the brain than entering it producing a negative arterio-venous difference (AVD). A high plasma Cho level “forces” its uptake in the brain and raises its concentration (Dross and Kewitz, 1972; Tucek, 1978; Klein et al., 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acara M, Rennick B (1972) Renal tubular transport of choline: modifications caused by intrarenal metabolism. J Pharmacol Exper Ther 182:1–13

    CAS  Google Scholar 

  • Andriamampandry C., Freysz L, Kanfer JN, Dreyfus H, Massarelli R (1989a) Conversion of ethanolamine, monomethylethanolamine and dimethylethanolamine to choline containing compounds by neurons in culture and the rat brain. Biochem J 264:555–562

    PubMed  CAS  Google Scholar 

  • Andriamampandry C., Freysz L, Kanfer JN, Massarelli R (1989b) The conversion of ethanolamine into choline in rat neuronal cultures and in the rat brain: correlation between acetylcholine synthesis and age, in Pharmacological interventions on central cholinergic mechanisms in senile dementia (Alzheimer’s disease), Kewitz, Thomsen, Bickel (eds), Zuckschwerdt Verlag

    Google Scholar 

  • Andriamampandry C., Massarelli R, Freysz L, Kanfer JN (1990) A rat brain cytosolic N-methyltransferase(s) activity converting phosphorylethanolami ne into phosphorylcholine. Biochem Biophys Res Commun 171:758–763

    Article  PubMed  CAS  Google Scholar 

  • Andriamampandry C., Freysz L, Kanfer JN, Dreyfus H, Massarelli R (1991) Effects of monomethylethanolamine, dimethylethanolamine, gangliosides, isoproterenol and 2-hydroxyethyl hydrazine on the conversion of ethanolamine to methylated products by cultured chick brain neurons. J Neurochem 56:1845–1850

    Article  PubMed  CAS  Google Scholar 

  • Barker LA, Mittag TW (1975) Comparative studies of substances and inhibitors of choline transport and choline acetyl transferase. J Pharmacol Exper Ther 192:86–94

    CAS  Google Scholar 

  • Blusztajn J, Zeisel SH, Wurtman RJ (1979) Synthesis of lecithin (phosphatidylcholine) from phosphatidylethanolamine in bovine brain. Brain Res 179:319–327

    Article  PubMed  CAS  Google Scholar 

  • Blusztajn JK, Liskovitch M, Richardson UI (1987) Synthesis of acetylcholine from choline derived from phosphatidylcholine in human neuronal cell line. Proc Natl Acad Sci (USA) 84:5474–5477

    Article  CAS  Google Scholar 

  • Blusztajn JK, Wurtman RJ (1981) Choline biosynthesis by a preparation enriched in synaptosomes from rat brain. Nature 290:417–418

    Article  PubMed  CAS  Google Scholar 

  • Brenton DP, Garrod PJ, Krywawysh S, Reynolds EO, Bachelard HS, Cox DW, Morris PG (1985) Phosphoethanolamine is a major constituent of phosphomonoester peak detected by 31NMR in newborn brain. Lancet 115

    Google Scholar 

  • Cornford EM, Braun L, Oldendorf WH (1978) Carrier-mediated blood-brain barrier transport of choline and certain analogs. J Neurochem 30:299–308

    Article  PubMed  CAS  Google Scholar 

  • Crews FT, Hirata F, Axelrod J (1980) Identification and properties of methyl transferases that synthesize phosphatidylcholine in rat brain synaptosomes. J Neurochem 34:1491–1498

    Article  PubMed  CAS  Google Scholar 

  • Dainous F, Freysz L, Mozzi R, Dreyfus H, Louis JC, Porcellati G, Massarelli R (1982) Synthesis of choline phospholipids in neuronal and glial cell cultures by the methylation pathway. FEBS Lett 146:221–223

    Article  PubMed  CAS  Google Scholar 

  • Dross K, Kewitz H (1972) Concentration and origin of choline in the rat brain. Naunyn Schmiedeberg’s Arch Pharmacol 274:91–106

    Article  CAS  Google Scholar 

  • Gardiner JE, Gwee MC (1974) The distribution in the rabbit of choline administered by injection or infusion. J Physiol 239:459–476

    PubMed  CAS  Google Scholar 

  • Haga T, Noda H (1973) Choline uptake systems of rat brain synaptosomes. Biochim Biophys Acta 291:564–575

    Article  PubMed  CAS  Google Scholar 

  • Haubrich DR, Wang PFL, Clody DE, Wedeking PW (1975) Increase in rat brain acetylcholine induced by choline or deanol. Life Sci 17:975–980

    Article  PubMed  CAS  Google Scholar 

  • Jope RS (1979) High affinity choline transport and acetylCoA production in brain and their roles in the regulation of acetylcholine synthesis. Brain Res 180:313–344

    PubMed  CAS  Google Scholar 

  • Kewitz H, Pleul O (1977) Synthesis of choline from ethanolamine in rat brain. Proc Natl Acad Sci (USA) 3:2181–2195

    Google Scholar 

  • Klein J, Koppen A, Löffelholz K (1991) Uptake and storage of choline by rat brain: influence of dietary choline supplementation. J Neurochem 57:370–375

    Article  PubMed  CAS  Google Scholar 

  • Lerner J (1989) Choline transport specificity in animal cells and tissue. Comp Biochem Physiol C: Comp Pharmacol Toxicol 93:1–9

    Article  CAS  Google Scholar 

  • Martin K (1968) Concentrative accumulation of choline by human erythrocytes. J Gen Physiol 51:497–516

    Article  PubMed  CAS  Google Scholar 

  • Massarelli R, Sensenbrenner M, Ebel A, Mandel P (1974) Kinetics of choline uptake in mixed neuronal-glial and exclusively glial cultures. Neurobiology 4:414–418

    PubMed  CAS  Google Scholar 

  • Massarelli R, Dainous F, Freysz L, Dreyfus H, Mozzi R, Floridi A, Siepi D, Porcellati G (1982) The role of choline phospholipids and choline neosynthesis in the regulation of acetylcholine metabolism, in Basic and clinical aspects of molecular neurobiology. AM Giuffrida-Stella, G Gombos, B Benzi, HS Bachelard (eds), Menarini Foundation, pp 147–155

    Google Scholar 

  • Massarelli R, Mykita S, Sorrentino G (1986) The supply of choline to the brain in The Astrocytes, S Federoff, A Vernadakis (eds), Plenum Press, New York, pp 155–178

    Google Scholar 

  • Mozzi R, Porcellati G (1979) Conversion of phosphatidylethanolamine to phosphatidylcholine in rat brain by the methylation pathway. FEBS Lett 100: 363–366

    Article  PubMed  CAS  Google Scholar 

  • Mozzi R, Andreoli V, Porcellati G (1980) Involvement of S-adenosyl-methionine in brain phospholipid metabolism. In: Cavallini D, Gaull GE, Zappia V (eds) Natural Sulfur Compounds: Novel Biochemical and Structural Aspects. Plenum Press, New York, pp 41–54

    Chapter  Google Scholar 

  • Mozzi R, Siepi D, Andreoli V, Piccinin GL, Porcellati G (1981b) N-Methylation of phosphatidylethanolamine in different brain areas of the rat. Bull Molec Biol Med 6:6–15

    CAS  Google Scholar 

  • Mozzi R, Siepi D, Andreoli V, Porcellati G (1981b) The synthesis of choline plasmalogen by the methylation pathway in rat brain. FEBS Lett 131:115–118

    Article  PubMed  CAS  Google Scholar 

  • Nikawa J, Yamashita S (1983) 2-hydroxyethylhydrazine as a potent inhibitor of phospholipid methylation in yeast. Biochim Biophys Acta 751:201–209

    Google Scholar 

  • Pardridge WM, Oldendorf WH (1977) Transport of metabolic substrates through the blood-brain barrier. J Neurochem 28:5–12

    Article  PubMed  CAS  Google Scholar 

  • Seeger RC, Rayner S, Banerjee A, Chung H, Lang WE, Neusteim HB, Benedict WF (1977) Morphology, growth, chromosomal pattern and fibrinolytic activity of two new human neuroblastoma cell lines. Cancer Res 37, 1364–1371

    PubMed  CAS  Google Scholar 

  • Sheard NF, Zeisel SH (1986) An in vitro study of choline uptake by intestine from neonatal and adult rats. Ped Res 20:768–772

    Article  CAS  Google Scholar 

  • Simon JR, Atweh S, Kuhar MJ (1976) Sodium-dependent high affinity choline uptake: a regulatory step in the synthesis of acetylcholine. J Neurochem 26:909–922

    Article  PubMed  CAS  Google Scholar 

  • Singh IN, Sorrentino G, McCartney DG, Massarelli R, Kanfer JN (1990) Enzymatic activities during differentiation of the human neuroblastoma cells, LAN-1 and LAN-2. J Neurosci Res 25:476–485

    Article  PubMed  CAS  Google Scholar 

  • Singh IN, Sorrentino G, Massarelli R, Kanfer JN (1991) The metabolic fate of [3H-methyl]choline in cultured human neuroblastoma cell lines, LAN-1 and LAN-2. Molec Chem Neuropathol 14:53–65

    Article  CAS  Google Scholar 

  • Sorrentino G, Singh IN, Hubsch A, Kanfer JN, Mykita S, Massarelli R (1992) Muscarinic binding sites in a catechol aminergic human neuroblastoma cell line. Neurochem Res, in press

    Google Scholar 

  • Tucek S (1978) Acetylcholine synthesis in neurons. Chapman and Hall, London

    Google Scholar 

  • Tucek S (1984) Problems in the organization and control of acetylcholine synthesis in brain neurons. Prog Biophys Mol Biol 44:1–46.

    Article  PubMed  CAS  Google Scholar 

  • Tucek S (1985) Regulation of acetylcholine synthesis in the brain. J Neurochem 44:11–24

    Article  PubMed  CAS  Google Scholar 

  • Wecker L, Trommer BA (1984) Effects of chronic (dietary) choline availability on the transport of choline across the blood-brain barrier. J Neurochem 43:1762–1765

    Article  PubMed  CAS  Google Scholar 

  • Yamamura HI, Snyder SH (1973) High affinity transport of choline into synaptosomes of rat brain. J Neurochem 21:1355–1374

    Article  PubMed  CAS  Google Scholar 

  • Zeisel SH, Story DL, Wurtman RJ, Brunengraber H (1980) Uptake of free choline by isolated perfused rat liver. Proc Natl Acad Sci (USA) 77:4417–4419

    Article  CAS  Google Scholar 

  • Zeisel SH (1985) Formation of unesterified choline by rat brain. Biochim Biophys Acta 835:331–343

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Massarelli, R. et al. (1993). The Conversion of Ethanolamine Containing Compounds to Choline Derivatives and Acetylcholine. In: Massarelli, R., Horrocks, L.A., Kanfer, J.N., Löffelholz, K. (eds) Phospholipids and Signal Transmission. Nato ASI Series, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02922-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02922-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02924-4

  • Online ISBN: 978-3-662-02922-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics