Skip to main content

The Role of Arachidonic Acid as a Retrograde Messenger in Long-Term Potentiation

  • Conference paper
Phospholipids and Signal Transmission

Part of the book series: Nato ASI Series ((volume 70))

  • 71 Accesses

Abstract

In the past decade, a great deal of emphasis has been placed on establishing the mechanisms underlying long-term potentiation (LTP) in the hippocampus but despite intensive research, there is little agreement about the events leading to its establishment. However, it is agreed that there are at least two pharmacologically different phases of LTP, induction and maintenance, and in the past few years these two relatively distinct phases have, in general, been considered separately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers RF, Lovinger DM, Colley PA, Linden DJ, Routtenberg A (1986) Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science 231:587–589

    Article  PubMed  CAS  Google Scholar 

  • Aniksztejn L, Roisin MP, Amsellem R, Ben-Ari Y (1989) Long term potentiation in the hippocampus of the anaesthetized rat is not associated with a sustained enhanced release of endogenous excitatory amino acids. Neuroscience 28:387–392

    Article  PubMed  CAS  Google Scholar 

  • Bar PR, Weigant F, Lopes da Silva FH, Gispen WH (1984) Tetanic stimulation affects the metabolism of phosphoinositides in hippocampal slices. Brain Res 321:381–385

    Article  PubMed  CAS  Google Scholar 

  • Bekkers JM, Stevens CF (1990) Presynaptic mechanisms for long-term potentiation in the hippocampus. Nature 346:724–726

    Article  PubMed  CAS  Google Scholar 

  • Bliss TVP, Douglas RM, Errington ML, Lynch, MA (1986) Correlation between long-term potentiation and release of endogenous amino acids from dentate gyrus of anaesthetized rats. J Physiol (Lond) 377:391–408

    CAS  Google Scholar 

  • Bliss TVP, Lynch MA (1988) Long-term potentiation of synaptic transmission in the hippocampus; properties and mechanisms. In: Landfield PW and Deadwyler SA (eds) Long-term potentiation; from Biophysics to Behaviour. Alan R. Liss, New York, pp 3–77

    Google Scholar 

  • Clements MP, Lynch ML, Bliss TVP (1989) The increase in phosphoinositide turnover associated with long-term potentiation may be mediated through a GTP binding protein. Neurosci Res Commun 3:11–19

    Google Scholar 

  • Clements MP, Bliss TVP, Lynch ML (1991) Increase in arachidonic acid concentration in a postsynaptic membrane fraction following the induction of long-term potentiation in the dentate gyrus. Neurosci 45:379–389

    Article  CAS  Google Scholar 

  • Collingridge GL, Bliss TVP (1987) NMDA receptors — their role in long-term potentiation. Trends Neurosci 10:288–293

    Article  CAS  Google Scholar 

  • Davies SN, Lester RAJ, Reymann KG, Collingridge GL (1989) Temporally-distinct pre- and postsynaptic mechanisms maintain long-term potentiation. Nature 338:500–503

    Article  PubMed  CAS  Google Scholar 

  • Desmond NL, Levy WB (1988) Anatomy of associative long-term synaptic modification. In: Landfield PW and Deadwyler SA (eds) Long-term potentiation; from Biophysics to Behaviour. Alan R. Liss, New York, pp. 265–305

    Google Scholar 

  • Dolphin AC, Errington ML, Bliss TVP (1982) Long-term potentiation in perforant path in vivo is associated with increased glutamate release. Nature 297:496–498

    Article  PubMed  CAS  Google Scholar 

  • Douglas RM, Goddard GV, Riives M (1982) Inhibitory modulation of long-term potentiation: evidence for a postsynaptic locus of control. Brain Res 240:259–272.

    Article  PubMed  CAS  Google Scholar 

  • Dumuis A, Sebben M, Haynes L, Pin J-P, Bockaert J (1988) NMDA receptors activate the arachidonic acid cascade system in striatal neurons. Nature 336:68–70

    Article  PubMed  CAS  Google Scholar 

  • Dumuis A, Pin J-P, Oomagari K, Sebben M, Bockaert J (1990) Arachidonic acid released from striatal neurons by joint stimulation of ionotropic and metabotropic quisqualate receptors. Nature 347:182–184

    Article  PubMed  CAS  Google Scholar 

  • Errington ML, Lynch MA, Bliss TVP (1987) Long-term potentiation in the dentate gyrus: Induction and increased glutamate release are blocked by D(-)aminophosphonovalerate. Neuroscience 20:279–284

    Article  PubMed  CAS  Google Scholar 

  • Foster TC, McNaughton BL (1991) Long-term enhancement of CA1 synaptic transmission is due to increased quantal size, not quantal content. Hippocampus 1:79–92

    Article  PubMed  CAS  Google Scholar 

  • Gispen WH, Leunissen JLM, Oestreicher AB, Verkleij AJ, Zwiers H (1985) Presynaptic localization of B50 phosphoprotein: The ACTH-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism. Brain Res 328:381–385

    Article  PubMed  CAS  Google Scholar 

  • Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–387

    Article  PubMed  CAS  Google Scholar 

  • Gustafsson B, Huang Y-Y, Wigstrom H (1988) Phorbol ester-induced synaptic potentiation differs from long-term potentiation in the guinea pig hippocampus in vitro. Neurosci Lett 85:77–81

    Article  PubMed  CAS  Google Scholar 

  • Humes JL, Sadowski S, Galavage M, Goldenberg M, Subers E, Kuehl Jr FA, Bonney RJ (1983) Pharmacological effects of non-steroidal antiinflammatory agents on prostaglandin and leukotriene synthesis in mouse peritoneal macrophages. Biochem Pharmacol 32:2319–2322

    Article  PubMed  CAS  Google Scholar 

  • Hvalby O, Lacaille J-C, Hu G-Y, Andersen P (1987) Postsynaptic long-term potentiation follows coupling of dendritic glutamate application and synaptic activation. Experientia 43:599–601

    Article  PubMed  Google Scholar 

  • Izumi Y, Clifford DB, Zorumski CF (1991) 2-Amino-3-phosphonopropionate blocks the induction and maintenance of long-term potentiation in rat hippocampal slices. Neurosci Lett 122:187–190

    Google Scholar 

  • Katz B, Miledi R (1965) The effect of calcium on acetylcholine release from motor nerve endings. Proc R Soc Lond (Biol) 161:496–503

    Article  CAS  Google Scholar 

  • Kauer JA, Malenka RC, Nicoll RA (1988) NMDA application potentiates synaptic transmission in the hippocampus. Nature 334:250–252

    Article  PubMed  CAS  Google Scholar 

  • Landfield PW, Applegate MD, Pitler TA , Kerr DS (1988) Presynaptic mechanisms in short- and long-term potentiation: relevance to brain aging. In: Landfield PW and Deadwyler SA (eds) Long-term potentiation; from Biophysics to Behaviour. Alan R. Liss, New York, pp 377–408

    Google Scholar 

  • Lazarewicz JW, Wrobleski JT, Costa E (1990) N-methyl-D-aspartate-sensitive receptors induce calcium-mediated arachidonic acid release in primary cultures of cerebellar granule cells. J Neurochem 55:1875–1881

    Article  PubMed  CAS  Google Scholar 

  • Linden DJ, Murakami K, Routtenberg A (1986) A newly discovered protein kinase C activator (oleic acid) enhances long-term potentiation in the intact hippocampus. Brain Res 379:358–363

    Article  PubMed  CAS  Google Scholar 

  • Lovinger DM, Colley PA, Akers RF, Nelson RB, Routtenberg A (1986) Direct relation of long-term synaptic potentiation to phosphorylation of membrane protein Fl, a substrate for membrane protein kinase C. Brain Res 399:205–211

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Larson J, Kelso S, Barrioneuvo G, Schottler F (1983) Intracellular injection of EGTA block induction of hippocampal long-term potentiation. Nature 305:719–721

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA, Bliss, TVP (1986) Long-term potentiation of synaptic transmission in the hippocampus: effect of calmodulin and oleoyl-acetyl-glycerol (OAG) on release of 3H-glutamate. Neurosci Lett 65:171–176

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA, Errington ML, Bliss TVP (1989a) Nordihydroguaiaretic acid blocks the synaptic component of long-term potentiation and the associated increases in glutamate and arachidonate: An in vivo study in the dentate gyrus of the rat. Neuroscience 30:693–701

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA, Errington ML, Bliss TVP (1989b) The increase in [3H]-glutamate release associated with long-term potentiation in the dentate gyrus is blocked by commissural stimulation. Neurosci Lett 103:191–196

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA, Voss KL (1990) Arachidonic acid increases inositol phospholipid metabolism and glutamate release in synaptosomes prepared from hippocampal tissue. J Neurochem 55:215–221

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA, Voss KL (1991) Presynaptic changes in long-term potentiation; elevated synaptosomal calcium concentration and basal phosphoinositide turnover in dentate gyrus. J Neurochem 56:113–118

    Article  PubMed  CAS  Google Scholar 

  • Lynch MA, Clements MP, Voss KL, Bramham CR, Bliss TVP (1991) Is arachidonic acid a retrograde messenger in long-term potentiation? Biochem Soc Trans (in press)

    Google Scholar 

  • Malenka RC, Madison DV, Nicoll RA (1986) Potentiation of synaptic transmission in the hippocampus by phorbol esters. Nature 321:175–177

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Ayoub GS, Nicoll RA (1987) Phorbol esters enhance transmitter release in rat hippocampal slices. Brain Res 403:198–203

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Kauer JA, Zucker RS, Nicoll RA (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242:81–84

    Article  PubMed  CAS  Google Scholar 

  • Malinow R, Madison DV, Tsien RW (1988) Persistent protein kinase C activity underlying long-term potentiation. Nature 335:820–824

    Article  PubMed  CAS  Google Scholar 

  • Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKll blocks induction but not expression of LTP. Science 45:862–866

    Article  Google Scholar 

  • Malinow R, Tsien RW (1990) Presynaptic enhancement shown by whole cell recordings of long-term potentiation in hippocampal slices. Nature 346:177–179

    Article  PubMed  CAS  Google Scholar 

  • Massicotte G, Oliver MW, Lynch G, Baudry M (1990) Effect of bromophenacyl bromide, a phospholipase A2 inhibitor, on the induction and maintenance of LTP in hippocampal slices. Brain Res 537:49–53

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263

    Article  PubMed  CAS  Google Scholar 

  • Muller D, Joly M, Lynch G (1988) Contributions of quisqualate and NMDA receptors to the induction and expression of LTP. Science 242:1694–1697

    Article  PubMed  CAS  Google Scholar 

  • Muller D, Turnbull J, Baudry M, Lynch G (1988) Phorbol-ester-induced synaptic facilitation is different than long-term potentiation. Proc Nat Acad Sci US 85:6997–7000

    Article  CAS  Google Scholar 

  • Nicoletti F, Meek JL, Iadarola MJ, Chuang DM, Costa E (1986) Coupling of inositol phospholipid metabolism with excitatory amino acid recognition sites in rat hippocampus. J Neurochem 46:40–46

    Article  PubMed  CAS  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    Article  PubMed  CAS  Google Scholar 

  • O’Dell TJ, Hawkins RD, Kandel ER, Arancio O (1991) Tests on the roles of two diffusible substances in long-term potentiation: Evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci 88:11285–11289

    Article  PubMed  Google Scholar 

  • Okada D, Yamagishi S, Sugiyama H (1989) Differential effects of phospholipase inhibitors in long-term potentiation in the rat hippocampal mossy fibres and Schaffer/commissural synapses. Neurosci Lett 100:141–146

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Sanfeliu C, Hunt A (1990) Development and regulation of excitatory amino acid receptors involved in the release of arachidonic acid in cultured hippocampal neural cells. Devel Brain Res 57:55–62

    Article  CAS  Google Scholar 

  • Piomelli D, Volterra A, Dale N, Siegelbaum SA, Kandel ER, Schwartz JH, Belardetti F (1987) Lipoxygenase metabolites of arachidonic acid are second messengers for presynaptic inhibition of Aplysia sensory cells. Nature 328:38–43

    Article  PubMed  CAS  Google Scholar 

  • Reymann KG, Frey U, Jork R, Matties H (1988) Polymixin B, an inbitor of protein kinase C, prevents the maintenance of long-term potentiation in hippocampal CA1 neurones. Brain Res 440:305–314

    Article  PubMed  CAS  Google Scholar 

  • Routtenberg A, Lovinger DM, Steward O (1985) Selective increase in phosphorylation of a 47-kD protein (Fl) directly related to long-term potentiation. Behav Neural Biol 43:3–11

    Article  PubMed  CAS  Google Scholar 

  • Sanfeliu C, Hunt A, Patel AJ (1990) Exposure of N-methyl-D-aspartate increases release of arachidonic acid in primary cultures of rat hippocampal neurones and not in astrocytes. Brain Res 526:241–248

    Article  PubMed  CAS  Google Scholar 

  • Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254:1503–1506

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH, Bredt DS (1991) Nitric oxide as a neuronal messenger. Trends Pharmacol Sci 12:125–128

    Article  PubMed  CAS  Google Scholar 

  • Wigstrom H, Gustafsson B, Huang Y-Y, Abraham WC (1986) Hippocampal long-term potentiation is induced by pairing single afferent volleys with intracellularly injected depolarizing pulses. Acta Physiol Scand 126:317–319

    Article  PubMed  CAS  Google Scholar 

  • Williams JH, Bliss TVP (1991) Arachidonate-induced potentiation of synaptic transmission in the rat hippocampus in vitro is not mimicked by other cis-unsaturated fatty acids. J Physiol 434:21P

    Google Scholar 

  • Williams JH, Errington ML, Lynch MA, Bliss TVP (1989) Arachidonic acid induces a long-term activity-dependent enhancement of synaptic transmission in the hippocampus. Nature 341:739–742

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lynch, M.A., Voss, K.L., Clements, M.P., Bliss, T.V.P. (1993). The Role of Arachidonic Acid as a Retrograde Messenger in Long-Term Potentiation. In: Massarelli, R., Horrocks, L.A., Kanfer, J.N., Löffelholz, K. (eds) Phospholipids and Signal Transmission. Nato ASI Series, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02922-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02922-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02924-4

  • Online ISBN: 978-3-662-02922-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics