Charged Particle Acceleration

  • Helmut Wiedemann

Abstract

Accelerator physics is primarily the study of the interaction of charged particles with electromagnetic fields. In previous chapters we have concentrated the discussion on the interaction of transverse electrical and magnetic fields with charged particles and have derived appropriate formalisms to apply this interaction to the design of beam transport systems. The characteristics of these transverse fields is that they allow to guide charged particles along a prescribed path but do not contribute directly to the energy of the particles through acceleration. For particle acceleration we must generate fields with nonvanishing force components in the direction of the desired acceleration. Such fields are called longitudinal fields or accelerating fields. In a very general way we describe in this section the interaction of longitudinal electric fields with charged particles to derive the process of particle acceleration, its scaling laws, and its stability limits.

Keywords

Assure Compaction Expense Sine Crest 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 8.1
    G. Ising: Arkiv för Matematik, Astronomi och Fysik, 18, 1 (1924)Google Scholar
  2. 8.2
    R. Wideroe: Archiv für Elektrotechnik, 21, 387 (1928)CrossRefGoogle Scholar
  3. 8.3
    M.S. Livingston: The Development of High-Energy Accelerators, (Dover, New York 1966)Google Scholar
  4. 8.4
    V.I. Veksler: DAN (U.S.S.R.) 44, 393 (1944)Google Scholar
  5. 8.5
    E.M. McMillan: Phys.Rev. 68, 143 (1945)CrossRefADSGoogle Scholar
  6. 8.7
    L.W. Alvarez: Phys.Rev. 70, 799 (1946)Google Scholar
  7. 8.8
    K. Johnsen: CERN Symp. on High Energy Accel. CERN 56–25, 106 (1956), CERN, GenevaGoogle Scholar
  8. 8.9
    G.K. Green: CERN 56–25, 103 (1956), CERN, GenevaGoogle Scholar
  9. 8.10
    H. Goldstein: Classical Mechanics, (Addison-Wesley, Cambridge 1950)Google Scholar
  10. 8.11
    D. Deacon: Theory of the Isochronous Storage Ring Laser, Ph.D. Thesis, (Stanford University, Stanford, CA 1979)Google Scholar
  11. 8.12
    C. Pellegrini, D. Robin: Nucl. Instrum. and Methods A301, 27 (1991)CrossRefADSGoogle Scholar
  12. 8.13
    C.G. Lilliequist, K.R. Symon: MURA Internal Report, MURA-491, (1959)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Helmut Wiedemann
    • 1
  1. 1.Applied Physics Department and Stanford Synchroton Radiation LaboratoryStanford UniversityStanfordUSA

Personalised recommendations