Advertisement

A Chemosystematic Overview of Magnoliidae, Ranunculidae, Caryophyllidae and Hamamelidae

  • O. R. Gottlieb
  • M. A. C. Kaplan
  • D. H. T. Zocher
Chapter
Part of the The Families and Genera of Vascular Plants book series (FAMILIES GENERA, volume 2)

Abstract

Chemical markers, to be useful in macrosystematics, must be considered in order of decreasing generality. Thus the discovery of evolutionary relationships among the families of plants requires attention to be paid initially to the ubiquitous flavonoids. Within this biosynthetic class of metabolites the flavonol myricetin and the proanthocyanidins jointly classify the dicotyledons into three major blocks formed, if Takhtajan’s (1969) associations of families into subclasses is adopted in first approximation, by (1) Magnoliidae, Ranunculidae, and Caryophyllidae; (2) Hamamelidae, Dilleniidae, and Rosidae; and (3) Asteridae (Table 1). The present overview comprises comments on the three subclasses of block 1 and on the first subclass of block 2.

Keywords

Gallic Acid Sesquiterpene Lactone Aristolochic Acid Tropane Alkaloid Isoquinoline Alkaloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bate-Smith, E.C. 1962. See general references.Google Scholar
  2. Boudet, A., Ranjeva, R., Gadal, P. 1971. Propriété allostériques spécifiques des deux isoenzymes de la phénylalanine-ammoniaque lyase chez Quercus pedunculata. Phytochemistry 10: 997–1005.CrossRefGoogle Scholar
  3. Dev, S. (ed.) 1982–1986. CRC Handbook of terpenoids, Vols I–IV. Boca Raton: CRC Press.Google Scholar
  4. Deverall, B.J. 1982. Introduction. In: Bailey, J.A., Mansfield, J.W. (eds.) Phytoalexins. Glasgow: Blakie.Google Scholar
  5. Gottlieb, O.R. 1982. Micromolecular evolution, systematics and ecology. Berlin Heidelberg New York: Springer.CrossRefGoogle Scholar
  6. Gottlieb, O. R. 1989. The role of oxygen in phytochemical evolution towards diversity. Phytochemistry 28: 2545–2558.CrossRefGoogle Scholar
  7. Gottlieb, O.R. 1990. Phytochemicals: differentiation and function. Phytochemistry 29: 1715–1724.CrossRefGoogle Scholar
  8. Harborne, J. B. (ed.) 1988. The flavonoids, advances in research since 1980. London: Chapman and Hall.Google Scholar
  9. Hegnauer, R. 1964–1990. See general references.Google Scholar
  10. Hill, R. A., Kirk D.N., Makin, H.L.J., Murphy, G.M. 1991. Dictionary of steroids, 2 vols. London: Chapman and Hall.Google Scholar
  11. Rowe, J.B. (ed.) 1989. Natural products of woody plants, 2 vols. Berlin Heidelberg New York: Springer.Google Scholar
  12. Southon, I. W., Buckingham, J: 1989. Dictionary of Alkaloids, 2 vols. London: Chapman and Hall.Google Scholar
  13. Takasugi, M., Katui, N. 1986. A biphenyl phytoalexin from Cercidiphyllum japonicum. Phytochemistry 25: 2751–2752.CrossRefGoogle Scholar
  14. Takasugi, M., Munoz, L., Masamune, T., Shirata, A., Takahashi, K. 1978. Stilbene phytoalexins from diseased mulberry. Chem. Lett. 1241-1242.Google Scholar
  15. Takasugi, M., Anetai, M., Masamune, T., Shirata, A., Takahashi, K. 1980. Broussonins A and B, new phytoalexins from diseased paper mulberry. Chem. Lett. 339-340.Google Scholar
  16. Takhtajan, A. 1969. Flowering plants, origin and dispersal. Washington: Smithsonian Institution Press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • O. R. Gottlieb
  • M. A. C. Kaplan
  • D. H. T. Zocher

There are no affiliations available

Personalised recommendations