Import of Colicins into Escherichia Coli

  • Hélène Benedetti
  • Lucienne Letellier
  • Roland Lloubes
  • Vincent Geli
  • Daniel Baty
  • Jean-Marie Pages
  • Claude Lazdunski
Conference paper
Part of the NATO ASI Series book series (volume 63)

Abstract

All bacterial organisms have an envelope which has the primary role to constitute a physical barrier between the cytoplasm and the extracellular medium thereby protecting cells from harmful compounds from this medium. However, exchanges with the latter are required since cells must take up nutrients useful for growth.

Keywords

Permeability Fractionation Lysine Polypeptide Pyruvate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baty D, Frenette M, Lloubes R, Geli V, Howard SP, Pattus F, Lazdunski C (1988) Functional domains of colicin A. Mol Microbiol 2:807–811PubMedCrossRefGoogle Scholar
  2. Benedetti H (1991a) Importation des colicines à travers l’enveloppe d’Escherichia coli. PhD Thesis, Université d’Aix-Marseille IGoogle Scholar
  3. Benedetti H, Frenette M, Baty D, Lloubès R, Geli V, Lazdunski C (1989) Comparison of uptake systems for the entry of various BtuB group colicins into Escherichia coli. J Gen Microbiol 135:3413–3420PubMedGoogle Scholar
  4. Benedetti H, Frenette M, Baty D, Knibiehler M Pattus F, Lazdunski C (1991a) Individual domains of colicins confer specificity in colicin uptake, in pore-properties and in immunity requirements. J Mol Biol 217:429–439PubMedCrossRefGoogle Scholar
  5. Benedetti H, Lazdunski C, Letellier L (1991b) Colicin A unfolds during its translocation in E. coli cells and spans the whole cell envelope when its pore has formed. Submitted for publicationGoogle Scholar
  6. Benedetti H, Lazdunski C, Lloubès R (1991c) Protein import into Escherichia coli: colicins A and E1 interact with a component of their translocation system. EMBO J 10 (in press)Google Scholar
  7. Boeke J, Model P, Zinder N (1982) Effects of bacteriophage f1 gene III protein on the host cell membrane. Mol Gen Genet 186:185–192PubMedCrossRefGoogle Scholar
  8. Bourdineaud JP, Howard SP, Lazdunski C (1989) Localization and assembly into the Escherichia coli envelope of a protein required for entry of colicin A. J Bacteriol 171:2458–2465PubMedGoogle Scholar
  9. Bourdineaud JP, Boulanger P, Lazdunski C, Letellier L (1990) In vivo properties of colicin A: channel activity is voltage dependent but translocation may be voltage independent. Proc Natl Acad Sci USA 87:1037–1041PubMedCrossRefGoogle Scholar
  10. Braun V, Hantke K (1977) In “Microbial Interactions”, JL Reissing (ed), Chapman and Hal: London, p 101–137Google Scholar
  11. Braun V (1989) The structurally related exbB and tolQ genes are interchangeable in conferring tonB-dependent colicin, bacteriophage, and albomycin sensitivity. J Bacteriol 171:6387–6390PubMedGoogle Scholar
  12. Braun V, Frenz S, Hantke K, Schaller K (1980) Penetration of colicin M into cells of Escherichia coli. J Bacteriol 142:162–168PubMedGoogle Scholar
  13. Braun V, Günter K, Hantke K (1991) Transport of iron across the outer membrane. Bio Metals 4:14–22CrossRefGoogle Scholar
  14. Brewer S, Tolley M, Trayer I, Barr G, Dorman C, Hannary K, Higgins C, Evans J, Levine B, Wormald M (1990) Structure and function of X-Pro dipeptide repeats in the TonB proteins of Salmonella typhimurium and Escherichia coli. J Mol Biol 216:883–895PubMedCrossRefGoogle Scholar
  15. Brunden KR, Cramer WA, Cohen FS (1984) Purification of a small receptor binding peptide from the central region of the colicin E1 molecule. J Biol Chem 259:190–196PubMedGoogle Scholar
  16. Burman L, NordstrÖm K (1971) Colicin tolerance induced by ampicillin or mutation to ampicillin resistance in a strain of E. coli K-12. J Bacteriol 106:1–13PubMedGoogle Scholar
  17. Buxton R, Holland I (1973) Genetic studies of tolerance to colicin E2 in Escherichia coli K-12: re-location and dominance relationships of cet mutations. Mol Gen Genet 127:69–88PubMedCrossRefGoogle Scholar
  18. Cavard D, Lazdunski C (1981) Involvment of BtuB and OmpF proteins in binding and uptake of colicin A. FEMS Microbiol Lett 12:311–316CrossRefGoogle Scholar
  19. Dankert J, Uratani Y, Graban C, Cramer W, Hermodson M (1982) On a domain structure of colicin E1. A COOH-terminal peptide fragment active in membrane depolarization. J Biol Chem 257:3857–3863PubMedGoogle Scholar
  20. Datta DB, Arden B, Henning U (1977) Major proteins of the Escherichia coli outer cell envelope membrane as bacteriophage receptors. J Bacteriol 131:821–829PubMedGoogle Scholar
  21. Davies JK, Reeves P (1975a) Genetics of resistance to colicins in Escherichia coli K12: cross-resistance among colicins of group B. J Bacteriol 123:96–101PubMedGoogle Scholar
  22. Davies JK, Reeves P (1975b) Genetics of resistance to colicins in Escherichia coli K12 cross-resistance among colicins of group A. J Bacteriol 123:102–117PubMedGoogle Scholar
  23. De Graaf FK, Stukart MJ, Boogerd FC, Metselaar K (1978) Limited proteolysis of cloacin DF13 and characterization of the cleavage products. Biochemistry 17:1137–1142PubMedCrossRefGoogle Scholar
  24. De Graaf FK, Oudega B (1986) Production and release of cloacin DF13 and related colicins. Curr Top Microbiol Immunol 125:183–205PubMedCrossRefGoogle Scholar
  25. Eick-Helmerich K, Braun V (1989) Import of biopolymers into Escherichia coli: nucleotide sequences of the exbB and exbD genes are homologous to those of the tolQ and tolR genes, respectively. J Bacteriol 171:5117–5123PubMedGoogle Scholar
  26. Eriksson-Grennberg K, NordstrÖm K (1973) Genetics and physiology of a tolE mutant of E. coli K-12 and phenotypic suppression of its phenotype by galactose. J Bacteriol 115:1219–1222PubMedGoogle Scholar
  27. Fischer E, Günter K, Braun V (1989) Involvment of ExbB and TonB in transport across the outer membrane of E. coli: phenotype complementation of exbB mutants by overexpressed tonB and physical stabilization of TonB by ExbB. J Bacteriol 171:5127–5134PubMedGoogle Scholar
  28. Foulds J, Barret C (1973) Characterization of Escherichia coli mutants tolerant to bacteriocin JF246: two new classes of tolerant mutants. J Bacteriol 116:885–892PubMedGoogle Scholar
  29. Fourel D, Hikita C, Bolla JM, Mizushima S, Pagès JM (1990) Characterization of OmpF domains involved in Escherichia coli K-12 sensitivity to colicins A and N. J Bacteriol 172:3675–3680Google Scholar
  30. Frenette M, Benedetti H, Bernadac A, Baty D, Lazdunski C (1991) Construction, expression and release of hybrid colicins. J Mol Biol 217:421–428PubMedCrossRefGoogle Scholar
  31. Hackett J, Reeves P (1983) Primary structure of the tolC gene that codes for an outer membrane protein of Escherichia coli K-12. Nucl Acids Res 11:6487–6495PubMedCrossRefGoogle Scholar
  32. Hancock R, Braun V (1976) Nature of the energy requirement for the irreversible adsoprtion of bacteriophages T1 and ϕ 80 to Escherichia coli. J Bacteriol 125:309–315Google Scholar
  33. Hancock R, Braun V (1978) Functional interaction of the tonA/tonB receptor system in Escherichia coli. J Bacteriol 135:190–197Google Scholar
  34. Hannavy K, Barr G, Dorman C, Adamson J, Mazengera L, Gallagher M, Evans J, Levine Bn Trayer I, Higgins C (1990) TonB protein of Salmonella typhimurium: A model for signal transduction between membranes. J Mol Biol 216:897–910PubMedCrossRefGoogle Scholar
  35. Hantke K (1976) Phage T6-colicin K receptor and nucleotide transport in Escherichia coli. FEBS Lett 70:109–112PubMedCrossRefGoogle Scholar
  36. Hantke K, Braun V (1975a) Membrane receptor dependent iron transport in Escherichia coli. FEBS Lett 49:301–305PubMedCrossRefGoogle Scholar
  37. Hantke K, Braun V (1975b) A function common to iron-enterochelin transport and action of colicins B, I, V in Escherichia coll FEBS Lett 59:277–281PubMedCrossRefGoogle Scholar
  38. Hantke K, Zimmerman L (1981) The importance of exbB gene for vitamin B12 and ferric iron transport. FEMS Microbiol Lett 12:31–35CrossRefGoogle Scholar
  39. Heller KJ, Kadner RJ, Günther K (1988) Suppression of the btuB451: mutations in the tonB gene suggests a direct interaction between TonB and TonB-dependent receptor proteins in the outer membrane of Escherichia coli. Gene 64:147–153PubMedCrossRefGoogle Scholar
  40. Hill C, Holland IB (1967) Isolation and properties of colicin refractory mutants and the preliminary mapping of their mutations. J. Bacteriol 94:677–686PubMedGoogle Scholar
  41. Hollifield WC, Neilands JB (1978) Ferric enterobactin transport system in Escherichia coli K12. Extraction, assay and specificity of outer membrane receptor. Biochemistry 17:1922–192PubMedCrossRefGoogle Scholar
  42. Kadner RJ, Bassford PJ, Pugsley AP (1979) Colicin receptors and mechanism of colicin uptake. Zentralbl Bakteriol Parasitenkd Infektionskr Hy Abt 244:90–104Google Scholar
  43. Konisky J (1982) Colicins and other bacteriocins with established modes of action. Ann Rev Microbiol 36:125–144CrossRefGoogle Scholar
  44. Lazzaroni JC, Portalier RC (1981) Genetic and biochemical characterization of periplasmic-leaky mutants of Escherichia coli K12. J Bacteriol 145:1351–1358PubMedGoogle Scholar
  45. Levengood S, Webster R (1989) Nucleotide sequences of the tolA and tolB genes and localization of their products, components of a multistep translocation system in Escherichia coli. J Bacteriol 171:6600–6609PubMedGoogle Scholar
  46. Lugtenberg B, van Alphen L (1983) Molecular architecture and functioning of the outer membrane of E. coli and other Gram-negative bacteria. Biochim Biophys Acta 737:51–115PubMedCrossRefGoogle Scholar
  47. Mankovich JA, Hsu CH, Konisky J (1986) DNA and aminoacid sequence analysis of structural and immunity genes of colicins Ia and Ib. J Bacteriol 168:228–236PubMedGoogle Scholar
  48. Martinez MC, Lazdunski C, Pattus F (1983) Isolation of molecular and functional properties of the C-terminal domain of colicin A. EMBO J 2:1501–1507PubMedGoogle Scholar
  49. Matsuzawa H, Ushiyama S, Koyama Y, Ohta T (1984) Escherichia coli K-12 tolZ mutants tolerant to colicins E2, E3, D, Ia, Ib defect in generation of electrochemical proton gradient. J. Bacteriol 160:733–739PubMedGoogle Scholar
  50. Misra R, Reeves P (1987) Role of micF in the tolC mediated regulation of OmpF a major outer membrane protein of Escherichia coli K-12. J Bacteriol 169:4722–4730PubMedGoogle Scholar
  51. Nagel del Zwaig R, Luria JE (1967) Genetics and physiology of colicin-tolerant mutants of Escherichia coli. J Bacteriol 94:1112–1123Google Scholar
  52. Nikaido H, Vaara M (1985) Molecular basis of bacterial outer membrane permeability. Microbiol Rev 49:1–32PubMedGoogle Scholar
  53. Niki H, Imamura R, Ogura T, Hiraga S (1990) Nucleotide sequence of the tolC gene of Escherichia coli. Nucl Acids Res 18:5547PubMedCrossRefGoogle Scholar
  54. Ohno-Iwashita Y, Imahori K (1980) Assignment of the functional loci in colicin El and E3 molecules by the characterization of their proteolytic fragments. Biochemistry 19: 652–659PubMedCrossRefGoogle Scholar
  55. Ohno-Iwashita Y, Imahori K (1982) Assignment of the functional loci of the colicin E1 molecule by characterization of their proteolytic fragments. J Biol Chem 257:6446–6451PubMedGoogle Scholar
  56. Parker M, Tucker A, Tsernoglou D, Pattus F (1990) Insights into membrane insertion based on studies of colicin. TIBS 15:126–129PubMedGoogle Scholar
  57. Postle K (1990) TonB and the gram-negative dilemna. Mol Microbiol 4:2019–2025PubMedCrossRefGoogle Scholar
  58. Postle K, Good R (1983) DNA sequence of the Escherichia coli tonB gene. Proc Natl Acad Sci USA 80:5235–5339PubMedCrossRefGoogle Scholar
  59. Postle K, Skare J (1988) Escherichia coli TonB protein is exported from the cytoplasm without proteolytic cleavag’e of its amino terminus. J Biol Chem 263:11000–11007PubMedGoogle Scholar
  60. Pugsley AP (1987) Nucleotide sequencing of the structural gene for colicin N reveals homology between the catalytic C-terminal domains of colicins A and N. Mol Microbiol 1:317–325PubMedCrossRefGoogle Scholar
  61. Pugsley A, Reeves P (1977) The role of colicin receptors in the uptake of ferrienterochelin by Escherichia coli K12. Biochem Biophys Res Commun 74:903–911PubMedCrossRefGoogle Scholar
  62. Ross U, Harkness R, Braun V (1989) Assembly of colicin genes from a few DNA fragments. Nucleotide sequence of colicin D. Mol Microbiol 3:891–902CrossRefGoogle Scholar
  63. SchÖffler A, Braun V (1989) Transport across the outer membrane of Escherichia coli via the Fhu A receptor is regulated by the TonB protein of the cytoplasmic membrane. Mol Gen Genet 217:378–383PubMedCrossRefGoogle Scholar
  64. Stengele I, Bross P, Garces X, Giray J, Rasched I (1990) Dissection of functional domains in phage fd adsorption protein: discrimination between attachment and penetration sites. J Mol Biol 212:143–149PubMedCrossRefGoogle Scholar
  65. Sun TP, Webster RE (1986) Fii (tolQ) a bacterial locus required for filamentous phage infection and its relation to colicin-tolerant tolA tolB. J Bacteriol 165:107–115PubMedGoogle Scholar
  66. Sun TP, Webster RE (1987) Nucleotide sequence of a gene cluster involved in the entry of the E colicins and the single stranded DNA of infecting filamentous phage into Escherichia coli. J Bacteriol 169:2667–2674PubMedGoogle Scholar
  67. Tabor S, Richardson C (1985) A bacteriophage T7 DNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci USA 70:3160–3164Google Scholar
  68. Wandersman C and Delepelaire P (1990) TolC, an E. coli outer membrane protein required for hemolysin secretion. Proc Natl Acad Sci USA 87:4776–4780PubMedCrossRefGoogle Scholar
  69. Wayne R, Neilands JB (1975) Evidence for common binding sites for ferrichrome compounds and bacteriophage Ø 80 in the cell envelope of Escherichia coli. J Bacteriol 121:459–503Google Scholar
  70. Webster R (1991) The tol gene products and the import of macromolecules into Escherichia coli. Mol Microbiol 5:1005–1011PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Hélène Benedetti
    • 1
  • Lucienne Letellier
    • 2
  • Roland Lloubes
    • 1
  • Vincent Geli
    • 1
  • Daniel Baty
    • 1
  • Jean-Marie Pages
    • 1
  • Claude Lazdunski
    • 1
  1. 1.Centre de Biochimie et de Biologie Moléculaire du C.N.R.S.Marseille Cedex 9France
  2. 2.Laboratoire des Biomembranes, U.A. 1116, C.N.R.S.Université PARIS-SUDOrsay CedexFrance

Personalised recommendations