Skip to main content

Computability and Complexity of Polynomial Optimization Problems

  • Conference paper
  • 119 Accesses

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 378))

Abstract

The paper is devoted to such general questions as the computability, decidability and complexity of polynomial optimization problems even for integer variables. The first part relates polynomial optimization to Tarski algebra, algorithmical semialgebraic geometry and Matija, sevich’s result on diophantine sets. The second part deals with the particular case of integer polynomial optimization, where all polynomials involved are quasiconvex with integer coefficients. In particular, we show that the polynomial inequality system f 1 ≤ 0,..., f s ≤ 0 admits an integer solution if and only if it admits such a solution in a ball B(0, R) with log R = (sd)0 (n) , where d ≥ 2 is a degree bound for all polynomials f l,..., f s , ∈ ℤ[x 1,..., x n ] and is a bound for the binary length of all coefficients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bank, B., R. Mandel (1988): Parametric integer optimization. Akademie-Verlag, Berlin.

    Google Scholar 

  2. Bank, B., R. Mandel (1988): (Mixed-) Integer solutions of quasiconvex polynomial inequalities. Mathematical Research Advances in Mathematical Optimization, Akademie-Verlag, Berlin, Vol. 45, 20–34.

    Google Scholar 

  3. Bank, B., J. Heintz, T. Krick, R. Mandel, P. Solernó (1990): Une borne géométrique pour la programmation entière à contraintes polynomiales. C. R. Acad. Sci. Paris t. 310, Série 1, 475–478.

    Google Scholar 

  4. Bank, B., J. Heintz, T. Krick, R. Mandel, P. Solernó (1991): Une borne optimale pour la programmation entière quasiconvexe. To appear in Math. Nachr.

    Google Scholar 

  5. Belousov, E. G. (1977): Introduction to convex analysis and integer programming. Edition Moscow University (in Russian).

    Google Scholar 

  6. Belousov, E. G., V. M. Shironin (1990): Geometry of numbers and integer pro-gramming. Podpi. nauk: popularnaja Ser. 3 /1990 (in Russian).

    Google Scholar 

  7. Benedetti, R., J.-J. Risler (1990): Real algebraic and semi-algebraic sets. Hermann, Paris.

    Google Scholar 

  8. Ben-Or, M., D. Kozen, J. Reif (1986): The complexity of elementary algebra and geometry. J. of Computation and Systems Sciences 32, 251–264.

    Article  Google Scholar 

  9. Blum, L., M. Shub, S. Smale (1989): On a theory of computation and complexity over the real numbers: NP-completeness, recursive functions and universal machines. Bull. (N.S.) of the AMS, Vol 21, 1, 1–46.

    Article  Google Scholar 

  10. Bochnak, J., M. Coste, M. F. Roy (1987): Géométrie algébrique réelle. Ergebnisse der Mathematik u. ihrer Grenzgebiete, 3. Folge, Bd. 12, Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  11. Borosh, L., L. B. Treybig (1976): Bounds on positive integral solutions of linear diophantine equations. Proceedings of the AMS, 55, 299–304.

    Article  Google Scholar 

  12. Cohen, P. J. (1969): Decision procedures for real and p-adic fields. Commu. Pure Appl. Math., 22, 131–151.

    Google Scholar 

  13. Collins, G. E. (1975): Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Lecture Notes in Computer Science 33, 134–183.

    Google Scholar 

  14. Coste, M., M. F. Roy (1981): Thom’s Lemma, the coding of real algebraic numbers and the computation of the topology of semi-algebraic sets. J. on Symbolic Computation 5, 121–130.

    Article  Google Scholar 

  15. Davenport, J., J. Heintz (1988): Real quantifier elimination is doubly exponential. J. Symbolic Comput. 5, 29–35.

    Article  Google Scholar 

  16. Davis, M. (1973): Hilbert’s tenth problem is unsolvable. Amer. Math. Monthly 80, 233–269.

    Google Scholar 

  17. Fischer, M. J., M. O. Rabin (1974): Super-exponential complexity of Presburger arithmetic. In: Complexity of Comput., ed. R. M. Karp, AMS, 27–41.

    Google Scholar 

  18. Garey, M. R., D. S. Johnson (1979): Computers and Intractability. Freeman and Company, San Francisco.

    Google Scholar 

  19. Grigor’ev, D. Yu. (1988): Complexity of deciding Tarski algebra. J. Symbolic Comput. 5, 65–108.

    Article  Google Scholar 

  20. Grigor’ev, D. Yu., N. N. Vorobjov (1988): Solving Systems of polynomial Inequalities in Subexponential Time. J. Symbolic Comput. 5, 37–64.

    Article  Google Scholar 

  21. Grötschel, M., L. Lovâsz, A. Schrijver (1988): Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  22. Grunewald, F., D. Segal (1980): Some general algorithms. I: Arithmetic groups. Annals of Mathematics, 112, 531–583.

    Google Scholar 

  23. Heindel, L. E. (1971): Integer Arithmetic Algorithms for Polynomial Real Zero Determination. J. of the Ass. for Comp. Machinery, Vol. 18, No. 4, 533–548.

    Article  Google Scholar 

  24. Heintz, J. (1983): Definability and fast quantifier elimination in algebraically closed fields. Theor. Comput. Sci. 24, 239–277.

    Google Scholar 

  25. Heintz, J., M.-F. Roy, P. Solernó (1989): Complexité du principe de TarskiSeidenberg. C. R. Acad. Sci. Paris, t. 309, Série I, 825–830.

    Google Scholar 

  26. Heintz, J., M.-F. Roy, P. Solernó (1989): On the complexity of semialgebraic sets (Extended abstract). Proc. IFIP Congress’89, I X World Computer Congress, North-Holland.

    Google Scholar 

  27. Heintz, J., M.-F. Roy, P. Solernó (1990): Sur la complexité du principe de TarskiSeidenberg. Bull. Soc. Math. France. 118, 101–126.

    Google Scholar 

  28. Hilbert, D. (1900): Mathematische Probleme. Vortrag gehalten auf dem internationalen Mathematiker-Kongreß zu Paris 1900. Nachr. Akad. Wiss. Göttingen, Math.-Phys., 253–297.

    Google Scholar 

  29. Jeroslow, R. G. (1973): There Cannot be Any Algorithm for Integer Programming with Quadratic Constraints. Operations Research, 21, 221–224.

    Article  Google Scholar 

  30. Karmarkar, N. (1984): A new polynomial-time algorithm for linear programming. Cominatorica, 4, 373–395.

    Article  Google Scholar 

  31. Karp, R. M. (1972): Reducibility among combinatorial problems. In: Complexity of Computer Computations ( R. E. Miller, J. W. Thatcher, eds.), Plenum Press, New York, 85–103.

    Chapter  Google Scholar 

  32. Khachiyan, L. G. (1979): A polynomial algorithm in linear programming. Doklady Akademii Nauk SSSR, 244, 1093–1096 (in Russian).

    Google Scholar 

  33. Khachiyan, L. G. (1983): Convexity and complexity in polynomial programming. Proc. Int. Congress Math., Varsovic.

    Google Scholar 

  34. Khachiyan, L. G., S. P. Tarasov (1980): Bounds and algorithmic complexity of convex Diophantine inequalities. Dokl. Akad. Nauk SSSR, 225 (in Russian).

    Google Scholar 

  35. Krick, T. (1990): Complejidad para problemas de geometria elemental. Thèse, Université de Buenos Aires.

    Google Scholar 

  36. Lee, R. D. (1976): An application on mathematical logic to the integer linear programming problems. Notre Dame Journal Formal ‘Logic, XIII, 2, 279–282.

    Google Scholar 

  37. Lenstra, Jr., H. W. (1983): Integer programming with a fixed number of variables. Mathematics of Operations Research, 8, 538–548.

    Article  Google Scholar 

  38. Levine, H. I. (1989): A lower bound for the topological complexitiy of Poly (D, n). J. of Complexity 5, no. 1, 34–44.

    Article  Google Scholar 

  39. Mandel, R. (1983): Zur Konstruktivität bei (gemischt-) ganzzahligen Optimierungsaufgaben. Math. Operationsforschung u. Statistik, Ser. Optimization, Heft 3, 343–357.

    Google Scholar 

  40. Mandel, R. (1985): Beiträge zur Theorie ganzzahliger Optimierungsaufgaben. Dissertation (B ), Humboldt-Universität zu Berlin.

    Google Scholar 

  41. Manders, K., L. Adleman (1976): N9-complete decision problems for quadratic polynomials. Proc. 8-th Annu. ACM Symp. on Theory of Comput., Hershey, Pennsylvania, 23–29.

    Google Scholar 

  42. Matijasevich, Yu. V. (1970): Enumerable sets are Diophantine. Dokl. Akad. Nauk SSSR, 191, 279–282 (in Russian).

    Google Scholar 

  43. Matijasevich, Yu. V. (1988): Diophantine complexity. Zap. Nauchn. Sem. Leningr. Otd. Steklova, 174, 122–131 (in Russian).

    Google Scholar 

  44. Mignotte, M. (1982): Some useful bounds. Computer Algebra ( Symbolic and Algebraic Computation ). Springer-Verlag, 259–264.

    Google Scholar 

  45. Müller, F. (1978): Ein exakter Algorithmus zur nichtlinearen Optimierung für beliebige Polynome mit mehreren Veränderlichen. Meisenheim, Verlag Anton Hain.

    Google Scholar 

  46. Oppen, D. C. (1978): A 222P“upper bound on the complexity of Presburger arithmetic. J. Comput. and Syst. Sci. 16, 3, 323–332.

    Article  Google Scholar 

  47. Presburger, M. (1929): Uber die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Rendus, 1er congr. des math. des Pays Slaves, Warszawa.

    Google Scholar 

  48. Renegar, J. (1989): On the computational complexity and geometry of the first order theory of the reals. Part III. Quantifier elimination. Technical Report 856, Cornell University.

    Google Scholar 

  49. Renegar, J. (1988): A polynomial-time algorithm based on Newton’s method for linear programming. Mathematical Programming, 40, 59–94.

    Article  Google Scholar 

  50. Renegar, J. (1988): A Faster PSPACE algorithm for decising the existential theory of the reals. Technical Report No. 792, Cornell University, Ithaca, NY.

    Google Scholar 

  51. Robinson, J. (1971): Hilbert’s tenth problem. Proc. Symp. Pure Math. 20, 191–194.

    Google Scholar 

  52. Robinson, J. (1969): Diophantine decision problems. Studies in number theory. MAA Studies in Math. 6, 76–116.

    Google Scholar 

  53. Robinson, J. (1969): Unsolvable Diophantine problem. Proc. Amer. Math. Soc. 222, 534–538.

    Google Scholar 

  54. Rockafellar, R. T. (1970): Convex Analysis. Princeton Mathematical Series no. 28.

    Google Scholar 

  55. Schimm, B. (1990): Über Schranken von Lösungen (gemischt-) ganzzahliger Optimierungsaufgaben mit quasikonvexen Polynomen in den Restriktionen und als Zielfunktion. Diplomarbeit, Humboldt-Universität zu Berlin.

    Google Scholar 

  56. Schrijver, A. (1986): Theory of linear and integer programming. Wiley Interscience Series in Discrete Mathematics.

    Google Scholar 

  57. Seidenberg, A. (1954): A new decision method for elementary algebra and geometry. Ann. Math. 60, 365–374.

    Google Scholar 

  58. Smale, S. (1987): On the Topology of Algorithms, I. J. of Complexity 3, 81–89.

    Article  Google Scholar 

  59. Solernó, P. (1989): Complejidad de conjuntos semialgebraicos. Thèse, Université de Buenos Aires.

    Google Scholar 

  60. Sonnevend, G. (1985): New algorithms in convex programming based on a notation of “centre” (for systems of analytic inequalities) and on rational extrapolation. Department of Numerical Analysis, Institute of Mathematics, L. Eötvös University, Budapest.

    Google Scholar 

  61. Strassen, V. (1984): Algebraic complexity. Birkhäuser.

    Google Scholar 

  62. Tarski, A. (1951): A decision method for elementary algebra and geometry. University of Californa Press.

    Google Scholar 

  63. Vaidya, P. M. (1987): An algorithm for linear programming which requires O(((m+ n)n2+(m+n)1,5n)L) arithmetic operations. AT & T Bell Laboratories, Murray Hill, New Jersey 07974.

    Google Scholar 

  64. von zur Gathen, J. (1986): Parallel arithmetic computations: a survey. Lecture Notes in Computer Science 233, Springer-Verlag, Berlin, 93–112.

    Google Scholar 

  65. Vorobjov, N. N. (1984): Bounds of real roots of algebraic equations. Notes of Sci. Seminars of Leningrad Dep. of Stehlov Inst. 137, 7–19.

    Google Scholar 

  66. Weispfenning, V. (1988): The complexity of linear problems in fields. J. Symbolic Computation 5, 3–27.

    Article  Google Scholar 

  67. Wuthrich, H. R. (1976): Ein Entscheidungsverfahren für die Theorie der reell-abgeschlossenen Körper. In: Lecture Notes in Computer Science, 43, 138–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bank, B., Heintz, J., Krick, T., Mandel, R., Solernó, P. (1992). Computability and Complexity of Polynomial Optimization Problems. In: Krabs, W., Zowe, J. (eds) Modern Methods of Optimization. Lecture Notes in Economics and Mathematical Systems, vol 378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02851-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02851-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55139-3

  • Online ISBN: 978-3-662-02851-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics