G’s dynamic learner model

  • Marc W. F. Meurrens
Conference paper
Part of the NATO ASI Series book series (NATO ASI F, volume 104)

Abstract

G is an object-oriented Intelligent Tutoring System (ITS) built around a dynamic learner model and a rule-based dialogue manager that selects objects for activation. Objects model both the content and the learning process. Boolean logic is used to represent facts, fuzzy logic is used for cognitive/skill evaluations. The learner model manages the context, the learner’s “cognitive” state, and the learner’s behavior. It is updated by a multi-criterion approach through specific instructions, automatic features, relations between objects, and internal modelling rules.

Keywords

artificial intelligence computer-based instruction fuzzy logic guided navigation implemented models instructional planning intelligent tutoring systems learner model learner control natural language object-oriented programming tutorial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, J., & Burton, R.: Diagnostic models for procedural bugs basic mathematical skills. Cognitive Science. 2, 155–192 (1978)CrossRefGoogle Scholar
  2. 2.
    Dubuisson, C., Meurrens, M., & Wera, M.T.: Elaboration d’un didacticiel de lecture. Bulletin de l’ACLA. 8, (1), 7–22 (1986)Google Scholar
  3. 3.
    Dubuisson, C., & Meurrens, M.: EAO et compréhension de textes: intérêt d’un système-auteur sans cheminement pré-établi. Actes du colloque EAO 87. pp. 465–474. Paris: Agence de l’Informatique 1987Google Scholar
  4. 4.
    Dubuisson, C., Meurrens, M., & Demaiziere, F.: Vers un système d’EIAO pour l’exploration assistée. Journal de la Formation Continue et de l’EAO 17th year. 229, October, 3–8 (1988)Google Scholar
  5. 5.
    Jones, M.K.: G: An object oriented learning system. ETRD, Educational Technology Research and Development. 38, (2), 93–97, 1990CrossRefGoogle Scholar
  6. 6.
    Koffman, E., & Blounts, S.: Artificial intelligence and automatic programming CAI. Artificial Intelligence. 6, 215–234 (1975)MATHCrossRefGoogle Scholar
  7. 7.
    Merrill, D.M., Li, Z., & Jones, M.K.: Second generation instructional design (ID2). Educational Technology. 30, (2), 7–14 (1990)Google Scholar
  8. 8.
    Merrill, D.M.: Domain knowledge representation for instructional analysis. Educational Technology. 30, (10), 7–32 (1990)Google Scholar
  9. 9.
    Meurrens, M.: An ‘intelligent’ approach to computer-aided learning: G. Proceedings of 5th Canadian Symposium on Instructional Technology. pp. 121–124. Otawa: National Research Council Canada 1986Google Scholar
  10. 10.
    Meurrens, M.: La gestion du modèle de l’apprenant dans le système d’EIAO: G. ICO, I.A. et Sciences Cognitives au Québec. 1, (2), 39–45 (1989)Google Scholar
  11. 11.
    Meurrens, M.: L’appropriation d’un didacticiel par l’élève. La Lettre G. 2, 6–12 (1989)Google Scholar
  12. 12.
    Meurrens, M.: La création d’un didacticiel sous forme d’une banque d’objets. Actes du 6e. symposium canadien sur la technologie pédagogique. pp. 168–172. Otawa: Conseil National de Recherche Canada 1989Google Scholar
  13. 13.
    Meurrens, M.: An object oriented learning system: G. Proceedings of the 31st International Conference, ADCIS, Association for the Development of Computer-Based Instructional Systems. pp. 311–315. Bellingham, WA: Western Washington University 1989Google Scholar
  14. 14.
    Meurrens, M., Dubuisson, C., & Nadeau, M.: La construction du profil de l’élève in un didacticiel intelligent de lecture. Actes du 2nd Congrès Européen Multi-média, I.A. et Formation, Lille, Sept. 1990Google Scholar
  15. 15.
    Nadeau, M., Dubuisson, C., & Meurrens, M.: La prise en compte des maldonnes othographiques in les dialogues élève/machine. Le Français Moderne. 59, (1), 4–21 (1990)Google Scholar
  16. 16.
    Palies, O.: Meta-connaissances pour la modélisation de l’élève; contribution au diagnostic cognitif par système expert. Ph. D., Paris: Université Paris 6-PMC 1988Google Scholar
  17. 17.
    Self, J.: Students models: what use are they?. Artificial tools in education, IFIP/TC3. Frascati: North Holland 1987Google Scholar
  18. 18.
    Weizenbaum, J.: ELIZA-A Computer Program for the Study of Natural Language Communication between Man and Machine. Communications of the ACM. 9, (1), 36–44, (1966)CrossRefGoogle Scholar
  19. 19.
    Wenger, E.: Artificial intelligence and tutoring systems. Computational and cognitive approaches to the communication of knowledge. Los Altos, CA: Morgan Kaufmann 1987Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Marc W. F. Meurrens
    • 1
  1. 1.Computer Graphics and Scientific Applications S.C.BrusselsBelgium

Personalised recommendations