Advertisement

Gap Labelling Theorems for Schrödinger Operators

  • Jean Bellissard
Chapter

Abstract

Quantum Mechanics was born in 1900, when Planck [PL00] investigated the laws of black body radiation. He found the correct formula for the power spectrum in terms of the light frequency. Einstein’s interpretation in 1905 by means of energy quanta [EI05] was confirmed by his interpretation of the photoelectric effect. However it took years before Quantum Mechanics became such a solid body of knowledge that it could not be avoided by any reasonable physicist. There is no doubt today that it is a fundamental theory of matter, and that it has changed daily life through new technology, in a way which has never been known before in human history.

Keywords

Selfadjoint Operator Schrodinger Equation Uniform Magnetic Field Integer Coefficient Schrodinger Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AA86]
    Axel, F. Allouche, J.P., Kléman M., Mendès-France, M. Peyrière J.: Vibrational modes in a one-dimensional quasi-alloy, the Morse case. J. Phys. C3, 47 (1986) 181–187.MATHGoogle Scholar
  2. [AH76]
    Albeverio, S., Høegh-Krohn, R.: Mathematical theory of Feynman path integral. Lecture Notes in Mathematics, vol. 523. Springer, Berlin Heidelberg New York 1976.Google Scholar
  3. [AP88]
    Axel, F., Peyrière, J.: C.R. Acad. Sci. Paris, série II 306 (1988) 179–182.MATHGoogle Scholar
  4. [AR74]
    Arnold, V.I.: Equations différentielles ordinaires. Ed. Mir, Moscow 1974.MATHGoogle Scholar
  5. [AR78]
    Arnold, V.I.: Méthodes mathématiques de la mécanique classique. Ed. Mir, Moscow 1978.Google Scholar
  6. [AS81]
    Avron, J., Simon, B.: Almost periodic Schrödinger operators, I. Limit Periodic Potentials. Commun. Math. Phys. 82 (1981) 101–120.MathSciNetMATHCrossRefGoogle Scholar
  7. [AT67]
    Atiyah M.: K-theory. Benjamin, New York Amsterdam 1967.Google Scholar
  8. [BB82]
    Bellissard, J., Bessis, D., Moussa, P.: Chaotic states of almost periodic Schrödinger operators. Phys. Rev. Lett. 49 (1982) 701–704.MathSciNetCrossRefGoogle Scholar
  9. [BB90]
    Bellissard, J., Bovier A., Ghez, J.M.: Spectral properties of a tight binding hamiltonian with period doubling potential. Commun. Math. Phys. 135 (1991) 379–399.MathSciNetMATHCrossRefGoogle Scholar
  10. [BB91]
    Bellissard, J., Bovier, A., Ghez, J.M.: Gap labelling theorems for 1D discrete Schrödinger operators, CPT preprint Marseille (May 1991), submitted to Rev. Math. Phys.Google Scholar
  11. [BE81]
    Bellissard, J.: Schrödinger operators with an almost periodic potential. In: Mathematical problems in theoretical physics (R. Schrader and R. Seiler, eds.). Lecture Notes in Physics, vol. 153. Springer, Berlin Heidelberg New York 1982, pp.356–359.CrossRefGoogle Scholar
  12. [BE86]
    Bellissard, J.: K-Theory of C*-algebras in solid state physics. In: Statistical mechanics and field theory, mathematical aspects (T.C. Dorlas, M.N. Hugenholtz, M. Winnink, eds.) Lecture Notes in Physics, vol. 257. Springer, Berlin Heidelberg New York 1986, pp. 99–156.CrossRefGoogle Scholar
  13. [BE88a]
    Bellissard, J.: Ordinary quantum Hall effect and non-commutative cohomology. In: Localization in disordered systems (W. Weiler and P. Ziesche, eds.). Teubner, Leipzig 1988.Google Scholar
  14. [BE88b]
    Bellissard, J.: C*-algebras in solid state physics. In: Operator algebras and applications (D.E. Evans and M. Takesaki, eds.). Cambridge Univ. Press, Cambridge 1988.Google Scholar
  15. [BE89]
    Bellissard, J.: Almost periodicity in solid state physics and C*-algebras. In: The Harald Bohr centenary (C. Berg, F. Fuglede, eds.) Royal Danish Acad. Sciences, MfM 42:3 (1989) 35-75.Google Scholar
  16. [BE90a]
    Bellissard, J.: Spectral properties of Schrödinger’s operator with a Thue-Morse potential. In: Number theory and physics (J.M. Luck, P. Moussa, M. Waldschmidt, eds.) Springer Proc. in Phys. 47 (1990).Google Scholar
  17. [BE90b]
    Bellissard, J.: Etats localisés du rotateur puisé. In: Journées Equations aux dérivées partielles. St Jean-de-Monts, SMF, 28 Mai-1er Juin 1990, Ecole Polytechnique, Palaiseau (1990). pp. XIII, 1-14.Google Scholar
  18. [BG77]
    Brown, L.G., Green, P., Rieffel, M.A.: Stable isomorphisms and strong Morita equivalence. Pacific J. Math. 71 (1977) 349–363.MathSciNetMATHCrossRefGoogle Scholar
  19. [BH25]
    Born, M., Heisenberg, W., Jordan, P.: Zur Quantenmechanik II. Z. Phys. 35 (1925) 557–615 (see [HE85, VW67]).Google Scholar
  20. [BI89]
    Bellissard, J., Iochum, B., Scoppola, E., Testard, D.: Spectral properties of one dimensional quasicrystals. Commun. Math. Phys. 125 (1989) 527–543.MathSciNetMATHCrossRefGoogle Scholar
  21. [BI90]
    Bellissard, J., Iochum, B., Testard, D.: Continuity properties of electronic spectrum of 1D quasicrystals. Commun. Math. Phys. 141 (1991) 353–380.MathSciNetMATHCrossRefGoogle Scholar
  22. [BJ25]
    Born, M., Jordan P.: Zur Quantenmechanik. Z. Phys. 34 (1925) 858–888 (see [VW67]).MATHCrossRefGoogle Scholar
  23. [BK90]
    Bellissard, J., Kreft, C., Seiler, R.: Analysis of the spectrum of a particle on a triangular lattice with two magnetic fluxes by an algebraic and numerical method. J. Phys. A 24 (1991) 2329–2353.MathSciNetMATHCrossRefGoogle Scholar
  24. [BL85]
    Bellissard, J., Lima R., Testard, D.: Almost periodic Schrödinger operators. In: Mathematics + Physics, Lectures on recent results, vol. 1 (L. Streit, ed.). World Science Publ., Singapore, Philadelphia 1985, pp. 1–64.Google Scholar
  25. [BL86]
    Blackadar, B.: K-Theory for operator algebras. MSRI publications 5. Springer, Berlin Heidelberg New York 1986.MATHCrossRefGoogle Scholar
  26. [BO13]
    Bohr, N.: On the constitution of atoms and molecules. Phil. Mag. 26 (1913) pp.1, 476, 857.MATHCrossRefGoogle Scholar
  27. [BO14]
    Bohr, N.: On the effect of electric and magnetic fields on spectral lines. Phil. Mag. 27 (1914) 506.CrossRefGoogle Scholar
  28. [BO15a]
    Bohr, N.: On the series spectrum of hydrogen and the structure of the atom. Phil. Mag. 29 (1915) 332.CrossRefGoogle Scholar
  29. [BO15b]
    Bohr, N.: On the quantum theory of radiation and the structure of the atom. Phil. Mag. 30 (1915) 394.CrossRefGoogle Scholar
  30. [BO18]
    Bohr, N.: On the quantum theory of Line-spectra. D. Kgl. Danske Viden. Selsk. Skrifter, Naturvidensk. og Mathem. Afd. 8. Rœkke, IV.1 (1918) 1-36. (Reproduced in [VW67]).Google Scholar
  31. [BO47]
    Bohr, H.: Almost periodic functions. Chelsea Publ. Co., New York 1947.Google Scholar
  32. [BO67a]
    Bourbaki, N.: Variétés différentielles et analytiques. Fasc. de résultats. Hermann, Paris 1967.Google Scholar
  33. [BO67b]
    Bourbaki, N.: Théories spectrales. Hermann, Paris 1967.MATHGoogle Scholar
  34. [BO83]
    Bohr N.: Discussion with Einstein on epistemological problems in atomic physics (see p. 9). In: Quantum Theory and Measurement (J.A. Wheeler and W.H. Zurek, eds.). Princeton Series in Physics, Princeton, NJ (1983), pp. 9-49.Google Scholar
  35. [BP70]
    Benderskii, M., Pastur, L.: On the spectrum of the one dimensional Schrödinger equation with a random potential. Math. Sborn. USSR 11 (1970) 245.CrossRefGoogle Scholar
  36. [BR25]
    Broglie, L. de: Nature 112 (1923) 540. Thèse (1924). Ann. Physique [10] (1925) 2.CrossRefGoogle Scholar
  37. [BR26]
    Brillouin, L.: J. Phys. Radium 7 (1926) 353–368.CrossRefGoogle Scholar
  38. [BR77]
    Brown, L.G.: Stable isomorphisms of hereditary subalgebras of C*-algebras. Pacific J. Math. 71 (1977) 335–348.MathSciNetMATHCrossRefGoogle Scholar
  39. [BR79]
    Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics. Springer, Berlin Heidelberg New York 1979.MATHCrossRefGoogle Scholar
  40. [BR81]
    Bruijn, N.J. de: Sequences of zeroes and ones generated by special production rules. Kon. Neder. Akad. Wetensch. Proc. A 84 (1981) 27–37.Google Scholar
  41. [BR90]
    Bellissard, J., Rammal, R.: An algebraic semiclassical approach to Bloch electrons in a magnetic field. J. Phys. France 51 (1990) 1803–1830.CrossRefGoogle Scholar
  42. [BS82a]
    Bellissard J., Scoppola E.: The density of states for an almost periodic Schrödinger operator and the frequency module: a counter-example. Commun. Math. Phys. 85 (1982) 301–308.MathSciNetMATHCrossRefGoogle Scholar
  43. [BS82b]
    Bellissard, J., Simon, B.: Cantor spectrum for the almost Mathieu equation. J. Funct. Anal. 48 (1982) 408–419.MathSciNetMATHCrossRefGoogle Scholar
  44. [BS91]
    Benza, V.G., Sire C.: Band spectrum for the octagonal qyasicrystal: gaps, finite measure, and chaos, CPT preprint Marseille (May 1991), submitted to Phys. Rev. Letters.Google Scholar
  45. [BV90]
    Bellissard, J., Vittot, M.: Heisenberg’s picture and non-commutative geometry of the semi classical limit in quantum mechanics. Ann. Inst. Henri Poincaré 52 (1990), 175–235.MathSciNetMATHGoogle Scholar
  46. [CA86]
    Casdagli, M.: Symbolic dynamics for the renormalization map of a quasiperiodic Schrödinger equation. Commun. Math. Phys. 107 (1986) 295–318.MathSciNetMATHCrossRefGoogle Scholar
  47. [CF87]
    Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger Operators. Text and Monographs in Physics. Springer, Berlin Heidelberg New York (1987).Google Scholar
  48. [CK80]
    Christol, G., Kamae, T., Mendès-France, M., Rauzy, G. Suites algébriques, automates et substitutions. Bull. SMF 108 (1980) 401–419.MATHGoogle Scholar
  49. [CM73]
    Coburn, L.A., Moyer, R.D., Singer, I.D.: C*-algebras of almost periodic pseudo-differential operators. Acta Math. 139 (1973) 279–307.MathSciNetCrossRefGoogle Scholar
  50. [CO23]
    Compton, A.H.: Proc. Nat. Acad. Sci. 9 (1923) 359.CrossRefGoogle Scholar
  51. [CO67]
    Coburn, L.A.: Bull. Amer. Math. Soc. 73 (1967) 722.MathSciNetMATHCrossRefGoogle Scholar
  52. [CO79]
    Connes, A.: Sur la théorie non commutative de l’intégration. Lecture Notes in Mathematics, vol. 725 Springer, Berlin Heidelberg New York 1979.Google Scholar
  53. [CO81]
    Connes, A.: An analogue of the Thorn isomorphism for crossed products of a C*-algebra by an action of ℝ. Adv. Math. 39 (1981) 31–55.MathSciNetMATHCrossRefGoogle Scholar
  54. [CO82]
    Connes, A.: A survey of foliation and operator algebras. In: Operator algebras and applications. Proc. Symposia Pure Math. 38 (1982), Part I, 521–628.MathSciNetGoogle Scholar
  55. [CO83]
    Connes, A.: Non-commutative differential geometry, Part I. The Chern character in K-homology, Part II, de Rham homology and non-commutative algebra. (Preprint IHES 1983) Publ. Math. 62 (1986) 44–144.Google Scholar
  56. [CO90]
    Connes, A.: Géométrie non commutative. InterEditions, Paris (1990).MATHGoogle Scholar
  57. [CR87]
    Connes, A., Rieffel, M.: Yang-Mills for non-commutative two tori. Contemp. Math. 62 (1987) 237–266.MathSciNetCrossRefGoogle Scholar
  58. [CS83]
    Craig, W., Simon, B.: Log Hölder continuity of the integrated density of states for stochastic Jacobi matrices. Commun. Math. Phys. 90 (1983) 207–218.MathSciNetMATHCrossRefGoogle Scholar
  59. [CU82]
    Cuntz, J.: The internal structure of simple C*-algebras. In: Operator algebras and applications. Proc. Symposia Pure Math. 38 (1982) Part I, 85–115.MathSciNetGoogle Scholar
  60. [CW78]
    Claro, F.H., Wannier, W.H.: Closure of bands for Bloch electrons in a magnetic field. Phys. Status Sol. B 88 (1978) K147–151.CrossRefGoogle Scholar
  61. [CW79]
    Claro, F.H., Wannier, W.H.: Magnetic subband structure of electrons on a hexagonal lattice. Phys. Rev. B 19 (1979) 6068–6074.CrossRefGoogle Scholar
  62. [CW81]
    Claro, F.H., Wannier, W.H.: Spectrum of tight binding electrons on a square lattice with magnetic field. Phys. Status Sol. B 104 (1981) K31–34.CrossRefGoogle Scholar
  63. [DI26]
    Dirac, P.A.M.: The fundamental equations of quantum mechanics. Proc. Roy. Soc. London A 109 (1926) 642–653.Google Scholar
  64. [DI69]
    Dixmier, J.: Les algèbres d’opérateurs dans l’espace hilbertien (2nd Printing). Gauthier-Villars, Paris (1969).Google Scholar
  65. [DK85]
    Duneau, M., Katz, A.: Quasiperiodic patterns. Phys. Rev. Lett. 54 (1985) 2688–2691.MathSciNetCrossRefGoogle Scholar
  66. Duneau, M., Katz, A.: Quasiperiodic patterns and icosahedral symmetry. J. de Phys. 47 (1986) 181–196.MathSciNetMATHCrossRefGoogle Scholar
  67. [DP90]
    Delyon, F., Peyrière, J.: Recurrence of the eigenstates of a Schrödinger operator with automatic potential. J. Stat. Phys. 64 (1991) 363–368.MATHCrossRefGoogle Scholar
  68. [DS83]
    Delyon, F., Souillard, B.: The rotation number for finite difference operators and its properties. Commun. Math. Phys. 89 (1983) 415.MathSciNetMATHCrossRefGoogle Scholar
  69. [DS84]
    Delyon, F., Souillard, B.: Remark on the continuity of the density of states of ergodic finite difference operators. Commun. Math. Phys. 94 (1984) 289–291.MathSciNetMATHCrossRefGoogle Scholar
  70. [EI05]
    Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17 (1905) 132.MATHCrossRefGoogle Scholar
  71. [EI17]
    Einstein, A.: Zum Quantensatz von Sommerfeld und Epstein. Verh. der D. Physikal. Ges. 19 (1917) 82–92.Google Scholar
  72. [EL82a]
    Elliott, G.: On the K-theory of the C*-algebra generated by a projective representation of ℤn. In: Operator algebras and applications. Proc. Symposia Pure Math. 38 (1982) Part I, 17–180 and in: Operator algebras and group representations. G. Arsene Ed., Pitman, London 1983.Google Scholar
  73. [EL82b]
    Elliott, G.: Gaps in the spectrum of an almost periodic Schrödinger operator. C.R. Math. Ref. Acad. Sci. Canada 4 (1982) 255–259.MATHGoogle Scholar
  74. [EL85]
    Elser, V.: Indexing problem in quasicrystal diffraction. Phys. Rev. B 32 (1985) 4892–4898; the diffraction pattern of projected structures. Acta Crystallogr. A 42 (1986) 36-43.CrossRefGoogle Scholar
  75. [FA75]
    Faris, W.G.: Self-adjoint operators. Lecture Notes in Math. 433 (1975).Google Scholar
  76. [FE48]
    Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20 (1948) 367–385.MathSciNetCrossRefGoogle Scholar
  77. [FU80]
    Fujiwara, D.: Remarks on convergence of some Feynman path integrals. Duke Math. J. 47 (1980) 559–600.MathSciNetMATHCrossRefGoogle Scholar
  78. [FU90]
    Fujiwara, D.: The Feynman integral as an improper integral over Sobolev space. In: Journées Equations aux dérivées partielles. St Jean-de-Monts, SMF, 28 Mai-1er Juin 1990, pp. XIV, 1-15, Ecole Polytechnique, Palaiseau 1990.Google Scholar
  79. [GA77]
    Gardner, M.: Sci. Am. 236 no. 1 (1977) 110.CrossRefGoogle Scholar
  80. [GB82]
    Galgani, L., Benettin, G.: Planck’s formula for classical oscillators with stochastic thresholds. Lett. al Nuovo Cim. 35 (1982) 93–96.MathSciNetCrossRefGoogle Scholar
  81. [GH89]
    Guillement, J.P., Helffer, B., Treton, P.: Walk inside Hofstadter’s butterfly. J. de Phys. 50 (1990) 2019–2058.CrossRefGoogle Scholar
  82. [GM90]
    Gerard, C., Martinez, A., Sjöstrand, J.: A mathematical approach to the effective Hamiltonian in perturbed periodic problems. Preprint Univ. Paris-Sud 1990, pp. 90-14.Google Scholar
  83. [GR69]
    Greenleaf, F.: Invariant means on topological groups. Van Nostrand Reinhold, New York 1969.MATHGoogle Scholar
  84. [HA55]
    Harper, P.G.: Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. London A 68 (1955) 874.MATHCrossRefGoogle Scholar
  85. [HA56]
    Halmos, P.R.: Lectures on ergodic theory. Chelsea Publ. Co., New York 1956.MATHGoogle Scholar
  86. [HA78a]
    Hahn, P.: Haar measure for measure groupoids. Trans. Amer. Math. Soc. 242, no. 519 (1978) 1–33.MathSciNetMATHCrossRefGoogle Scholar
  87. [HA78b]
    Hahn, P.: The regular representation of measure groupoids. Trans. Amer. Math. Soc. 242 no 519 (1978) 35–72.MathSciNetMATHCrossRefGoogle Scholar
  88. [HE25]
    Heisenberg, W.: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. 33 (1925) 878–893 (see [HE85, VW67]).Google Scholar
  89. [HE27]
    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43 (1927) 172–198 (see [HE85]).MATHCrossRefGoogle Scholar
  90. [HE79]
    Herman, M.R.: Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Pub. Math. IHES 49 (1979) 5–234.MathSciNetMATHGoogle Scholar
  91. [HE85]
    Heisenberg, W.: Gesammelte Werke, Collected Works (W. Blum, H.P. Dürr and H. Rechenberg, eds.).(Springer, Berlin Heidelberg New York 1985.Google Scholar
  92. [HK87]
    Hatakeyama, T., Kamimura, H.: Electronic properties of a Penrose tiling lattice in a magnetic field. Solid State Comm. 62 (1987) 79–83.CrossRefGoogle Scholar
  93. [HO76]
    Hofstadter, D.R.: Energy levels and wave functions of Bloch electrons in a rational or irrational magnetic field. Phys. Rev. B 14 (1976) 2239.CrossRefGoogle Scholar
  94. [HO85]
    Hörmander, L.: The analysis of linear partial differential operators III. Grundlehren der mathematischen Wissenschaften, vol. 274. Springer, Berlin Heidelberg New York 1985.MATHGoogle Scholar
  95. [HS87]
    Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l’équation de Harper I, II, III., in: Mémoires de la SMF (1990).Google Scholar
  96. [JA74]
    Jammer, M.: The philosophy of Quantum Mechanics. John Wiley and Sons, New York London Sydney Toronto 1974.Google Scholar
  97. [JD88]
    Janot, C., Dubois, J.M. (eds.): Quasicrystalline materials. Grenoble 21-25 March 1988, World Scientific Pub., Singapore 1988.Google Scholar
  98. [JM82]
    Johnson, R., Moser, J.: The rotation number for almost periodic potentials. Commun. Math. Phys. 84 (1982) 403–438.MathSciNetMATHCrossRefGoogle Scholar
  99. [JO83]
    Johnson, R.: A review of recent works on almost periodic differential and difference operators. Acta Appl. Math. 1 (1983) 241–261.MathSciNetMATHCrossRefGoogle Scholar
  100. [JO86]
    Johnson, R.A.: Exponential dichotomy, rotation number, and linear differential equations. J. Differential Equations 61 (1986) 54–78.MathSciNetMATHCrossRefGoogle Scholar
  101. [JO90]
    Johnson, R.: Oscillation theory for the odd-dimensional Schrödinger operator. (Preprint IMA) Univ. of Minnesota, Minneapolis (1990).Google Scholar
  102. [JR82]
    Jaffe, C., Reinhard, W.P.: Uniform semiclassical quantization of regular and chaotic classical dynamics on the Hénon-Heiles surface. J. Chem. Phys. 77 (1982) 5191–5203.MathSciNetCrossRefGoogle Scholar
  103. [KA78]
    Karoubi, M.: K-theory. An introduction. Grundlehren der mathematischen Wissenschaften, vol. 226. Springer, Berlin Heidelberg New York 1978.MATHGoogle Scholar
  104. [KC88]
    Keirstead, W.P., Cecatto, H.A., Huberman, B.A.: Vibrational properties of hierarchical systems. J. Stat. Phys. 53 (1988) 733–757.CrossRefGoogle Scholar
  105. [KE58]
    Keller, J.B.: Corrected Bohr-Sommerfeld quantum conditions for nonseparable systems. Ann. Phys. 4 (1958) 180–188.MATHCrossRefGoogle Scholar
  106. [KK83]
    Kadanoff, L.P., Kohmoto, M., Tang, C.: Localization problem in one dimension: mapping and escape. Phys. Rev. Lett. 50 (1983) 1870–1872.MathSciNetCrossRefGoogle Scholar
  107. [KL86]
    Kalugin, P.A., Kitaev, A. Yu., Levitov, S: Electron spectrum of a one dimensional quasi-crystal. Sov. Phys. JETP 64 (1986) 410–415.Google Scholar
  108. [KM82]
    Kirsch, W., Martinelli, F.: On the density of states of Schrödinger operators with a random potential. J. Phys. A 15 (1982) 2139–2156.MathSciNetMATHCrossRefGoogle Scholar
  109. [KN84]
    Kramer, P., Neri, R.: On periodic and non periodic space fillings of E n obtained by projections. Acta Crystallogr. A 40 (1984) 580–587.MathSciNetMATHCrossRefGoogle Scholar
  110. [KO84]
    Kohmoto, M., Oono, Y.: Cantor spectrum for an almost periodic Schrödinger operator and a dynamical map. Phys. Lett. 102 A (1984) 145–148.MathSciNetGoogle Scholar
  111. [KS86]
    Kohmoto, M., Sutherland, B.: Electronic states on a Penrose lattice. Phys. Rev. Lett. 56 (1986) 2740–2743.CrossRefGoogle Scholar
  112. [KS89]
    Kunz, H., Livi, R., Suto, A.: Cantor spectrum and singular continuity for a hierarchical hamiltonian. Commun. Math. Phys. 122 (1989) 643–679.MathSciNetMATHCrossRefGoogle Scholar
  113. [LA30]
    Landau, L.: Diamagnetismus der Metalle. Z. Phys. 64 (1930) 629–637.MATHCrossRefGoogle Scholar
  114. [LE89]
    Levitov, L.S.: Renormalization group for a quasiperiodic Schrödinger operator. J. de Phys. 50 (1989) 707–716.MathSciNetCrossRefGoogle Scholar
  115. [LM88]
    Livi, R., Maritan, A., Ruffo, S.: The spectrum of a 1-D hierarchical model. J. Stat. Phys. 52 (1988) 595–608.MathSciNetMATHCrossRefGoogle Scholar
  116. [LP86]
    Luck, J.M., Petritis, D.: Phonon spectra in one dimensional quasicrystals. J. Stat. Phys. 42 (1986) 289–310.CrossRefGoogle Scholar
  117. [LS84]
    Levine, D., Steinhardt: Quasicrystals: a new class of ordered structure. Phys. Rev. Lett. 53 (1984) 2477–2480.CrossRefGoogle Scholar
  118. [LU90]
    Luck, J.M.: Cantor spectra and scaling of gap widths in deterministic aperiodic systems. Phys. Rev. B 39 (1989) 5834–5849.CrossRefGoogle Scholar
  119. [MA76]
    Mermin, D., Ashcroft: Solid state physics. Saunders, Philadelphia Tokyo 1976.Google Scholar
  120. [MA85]
    Marcus, R.A.: Aspect of intramolecular dynamics in Chemistry. In: Chaotic behaviour in Quantum Systems. (G. Casati, ed.) NATO ASI B120, Plenum, New York 1985.Google Scholar
  121. [MK82]
    Mackay, A.L.: Physica 114 A (1982) 566–613.MathSciNetGoogle Scholar
  122. Mackay, A.L.: Sov. Phys. Crystallogr. 26 (1981) 5.MathSciNetGoogle Scholar
  123. [MO21]
    Morse, Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc. 22 (1921) 84–100.MathSciNetMATHCrossRefGoogle Scholar
  124. [MO81]
    Moser, J.: An example of a Schrödinger equation with an almost periodic potential and nowhere dense spectrum. Commun. Math. Helv. 56 (1981) 198.MATHCrossRefGoogle Scholar
  125. [MO88]
    Mosseri, R., Oguey, C., Duneau, M.: A new approach to quasicrystal approximants. In: Ref. [JD88].Google Scholar
  126. [MS83]
    Mosseri, R., Sadoc, J.F.: In: Structure of non crystalline materials 1982. Taylor and Francis London 1983.Google Scholar
  127. [NA77]
    Nakao, S.: On the spectral distribution for the Schrödinger operator with a random potential. Japan J. Math. 3 (1977) 111.MathSciNetMATHGoogle Scholar
  128. [NB90]
    Nakamura, S., Bellissard, J.: Low energy bands do not contribute to the quantum Hall effect. Commun. Math. Phys. 131 (1990) 283–305.MathSciNetMATHCrossRefGoogle Scholar
  129. [NE64]
    Nelson, E.: Feynman integrals and the Schrödinger equation. J. Math. Phys. 5 (1964) 332–343.MATHCrossRefGoogle Scholar
  130. [NS85]
    Nelson, D., Sachdev, S.: Statistical mechanics of pentagonal and icosahedral order in dense liquids. Phys. Rev. B 32 (1985) 1480–1502.CrossRefGoogle Scholar
  131. [OK85]
    Ostlund, S., Kim, S.: Renormalization of quasiperiodic mappings. Physica Scripta 9 (1985) 193–198.MathSciNetCrossRefGoogle Scholar
  132. [ON86]
    Odagaki, T., Nguyen, D.: Electronic and vibrational spectra of two-dimensional quasicrystals. Phys. Rev. B 33 (1986) 2184–2190.CrossRefGoogle Scholar
  133. [OP83]
    Ostlund, S., Pandit, R., Rand, D., Schellnhuber, H.J., Siggia, E.D.: One dimensional Schrödinger equation with an almost periodic potential. Phys. Rev. Lett. 50 (1983) 1873–1877.MathSciNetCrossRefGoogle Scholar
  134. [PA26]
    Pauli, W.: Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik. Z. Phys. 36 (1926) 336–363 (see [VW67]).MATHCrossRefGoogle Scholar
  135. [PA73]
    Pastur, L.: Spectra of random selfadjoint operators. Usp. Mat. Nauk. 28 (1973) 3.MathSciNetMATHGoogle Scholar
  136. [PE33]
    Peierls, R.: Zur Theorie des Diamagnetismus von Leitungelektronen. Z. Phys. 80 (1933) 763–791.CrossRefGoogle Scholar
  137. [PE79]
    Pedersen, G.: C*-algebras and their automorphism groups. Academic Press, New York 1979.Google Scholar
  138. [PL00]
    Planck, M.: Zur Theorie des Gesetzes der Energieverteilung im Normalspektrum. Verh. der D. Physikal. Ges. 2 (1900) 237.Google Scholar
  139. [PN79]
    Penrose, R.: Bull. Inst. Math. 10 (1974) 266.Google Scholar
  140. Penrose, R.: The Mathematical Intelligencer 2 (1979) 22–37.MathSciNetCrossRefGoogle Scholar
  141. [PS86]
    Putnam, I., Schmidt, K., Skau, C.: C*-algebras associated with Denjoy diffeomorphisms of the circle. J. of Operator Theory 16 (1986) 99–126.MathSciNetMATHGoogle Scholar
  142. [PV80a]
    Pimsner, M., Voiculescu, D.: Exact sequences for K-groups and Ext groups of certain cross-product C*-algebras. J. Operator Theory. 4 (1980) 93–118.MathSciNetMATHGoogle Scholar
  143. [PV80b]
    Pimsner, M., Voiculescu, D.: Imbedding the irrational rotation C*-algebra into an AF algebra. J. Operator Theory 4 (1980) 201–211.MathSciNetMATHGoogle Scholar
  144. [QU87]
    Queffelec, M.: Substitution dynamical systems-Spectral analysis. Lecture Notes in Math. Springer, Berlin Heidelberg New York 1987, vol. 1294.MATHGoogle Scholar
  145. [RA84]
    Rammal, R.: Spectrum of harmonic excitations on fractals. J. de Phys. 45 (1984) 191–206.MathSciNetCrossRefGoogle Scholar
  146. [RA85]
    Rammal, R.: Landau level spectrum of Bloch electrons on a honeycomb lattice. J. de Phys. 46 (1985) 1345–1354.MathSciNetCrossRefGoogle Scholar
  147. [RE80]
    Renault, J.: A groupoid approach to C*-algebras. Lecture Notes in Math. 793 (1980).Google Scholar
  148. [RI81]
    Rieffel, M.A.: C*-algebras associated with irrational rotations. Pac. J. Math. 95 (2), (1981) 415–419.MathSciNetCrossRefGoogle Scholar
  149. [RI82]
    Rieffel, M.A.: Morita equivalence for operator algebras. In: Operator algebras and applications. Proc. Symposia Pure Math. 38, Part I (1982) 285–298.MathSciNetGoogle Scholar
  150. [RI90]
    Rieffel, M.A.: Critical points of Yang-Mills for noncommutative two-tori. J. Diff. Geom. 31 (1990) 535–546.MathSciNetMATHGoogle Scholar
  151. [RSII]
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, II. Fourier Analysis, Self-Adjointness. Academic Press, London 1975.MATHGoogle Scholar
  152. [RSIV]
    Reed, M., Simon, B.: Methods of modern mathematical physics, IV. Analysis of Operators. Academic Press, London 1978.MATHGoogle Scholar
  153. [RU11]
    Rutherford, E.: The scattering of α and β particles by matter and the structure of the atom. Phil. Mag. 21 (1911) 669.MATHCrossRefGoogle Scholar
  154. [RU59]
    Rudin, W.: Some theorems on Fourier coefficients. Proc. AMS 10 (1959) 855–859.MathSciNetMATHCrossRefGoogle Scholar
  155. [SA71]
    Sakai, S.: C*-algebras and W*-algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 60. Springer, Berlin Heidelberg New York 1971.Google Scholar
  156. [SA79]
    Sauvageot, J.L.: Idéaux primitifs induits dans les produits croisés. J. Funct. Anal. 32 (1979) 381–392.MathSciNetMATHCrossRefGoogle Scholar
  157. [SB84]
    Shechtman, D., Blech, I., Gratias, D., Cahn, J.V.: Metallic phase with long range orientational order and no translational symmetry. Phys. Rev. Lett. 53 (1984) 1951–1953.CrossRefGoogle Scholar
  158. [SB90]
    Sire, C., Bellissard, J.: Renormalization group for the octagonal quasi-periodic tiling. Europhys. Lett. 11 (1990) 439–443.CrossRefGoogle Scholar
  159. [SG22]
    Stern, O., Gerlach, W.: Z. Phys. 9 (1922) 349.CrossRefGoogle Scholar
  160. [SH79]
    Shubin, M.: The spectral theory and the index of elliptic operators with almost periodic coefficients. Russ. Math. Surv. 34 (1979) 109–157.MathSciNetMATHCrossRefGoogle Scholar
  161. [SI79]
    Simon, B.: Trace ideals and their applications. London Math. Soc. Lecture Notes 35 Cambridge Univ. Press 1979.Google Scholar
  162. [SI89]
    Sire, C.: Electronic spectrum of a 2D quasi-crystal related to the octagonal quasi-periodic tiling. Europhys. Lett. 10 (1990) 483–488.CrossRefGoogle Scholar
  163. [SO15]
    Sommerfeld, A.: Ber. Akad. München (1915) pp.425, 459 (see [VW67] p.95).Google Scholar
  164. [SO85]
    Sokoloff, J.B.: Unusual band structure, wave functions and electrical conductance in crystals with incommensurate periodic potentials. Phys. Reports 126 (1985) 189–244.CrossRefGoogle Scholar
  165. [SO87]
    Steinhardt, P.J., Ostlund, S.: The physics of quasicrystals. World Scientific Pub., Singapore 1987.MATHGoogle Scholar
  166. [SR26]
    Schrödinger, E.: Quantisierung als Eigenwert problem. Ann. Phys. 79 (1926) 361–376.MATHCrossRefGoogle Scholar
  167. [SR82]
    Shirts, R.B., Reinhardt, W.P.: Approximate constants of motion for classically chaotic vibrational dynamics: Vague Tori, semiclassical quantization, and classical intramolecular energy flow. J. Chem. Phys. 77 (1982) 5204–5217.MathSciNetCrossRefGoogle Scholar
  168. [SU87]
    Sütó, A.: The spectrum of a quasi-periodic Schrödinger operator. Commun. Math. Phys. 111 (1987) 409–415.CrossRefGoogle Scholar
  169. [SU89]
    Sütó, A.: Singular continuous spectrum on a Cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 56 (1989) 525–531.CrossRefGoogle Scholar
  170. [TA79]
    Takesaki, M.: Theory of operator algebras. Springer, Berlin Heidelberg New York 1979.MATHCrossRefGoogle Scholar
  171. [TF86]
    Tsunetsugu, H., Fujiwara, T., Ueda, K., Tokihiro, T.: Eigenstates in a 2-dimensional Penrose tiling. J. Phys. Soc. Japan 55 (1986) 1420–1423.CrossRefGoogle Scholar
  172. [TU06]
    Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreichen. Videnskabsselskabets Skrifter I Mat. nat., Christiania (1906).Google Scholar
  173. [VW67]
    Waerden, B.L. van der: Sources of quantum mechanics. North-Holland Pub. Co., Amsterdam 1967.MATHGoogle Scholar
  174. [WI84]
    Wilkinson, M.: Critical properties of electron eigenstates in incommensurate systems. Proc. Roy. Soc. London A 391 (1984) 305–350.MathSciNetCrossRefGoogle Scholar
  175. [WI89]
    Wijnands, F.: Energy spectra for one-dimensional quasiperiodic potentials: bandwidth, scaling, mapping and relation with local isomorphism. J. Phys. A 22 (1989) 3267–3282.MathSciNetCrossRefGoogle Scholar
  176. [XI88]
    Xia, J.: Geometric invariants of the quantum Hall effect. Commun. Math. Phys. 119 (1988) 29–50.MATHCrossRefGoogle Scholar
  177. [ZA64]
    Zak, J.: Magnetic translation groups. Phys. Rev. A 134 (1964) 1602–1607.MathSciNetGoogle Scholar
  178. Zak, J.: Magnetic translation groups II: Irreducible representations. Phys. Rev. A 134 (1964) 1607–1611.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Jean Bellissard

There are no affiliations available

Personalised recommendations