Advertisement

An Introduction to Zeta Functions

  • Pierre Cartier
Chapter

Abstract

In this Chapter, we aim at giving an elementary introduction to some functions which were found useful in number theory. The most famous is Riemann’s zeta function defined as follows
$$ \zeta \left( s \right) = \sum\limits_{n = 1}^\infty {n^{ - s} } = \prod\limits_p {\left( {1 - p^{ - s} } \right)^{ - 1} } $$
(1)
(where p runs over all prime numbers). This function provided the key towards a proof of the prime number distribution: as it was conjectured by Gauss and Legendre before 1830 and proved by Hadamard and de La Vallée Poussin in 1898, the number π(x) of primes p such that px is asymptotic to x/log x.

Keywords

Functional Equation Prime Number Meromorphic Function Zeta Function Theta Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

A. General textbooks about number theory and works of historical value

  1. Blanchard, A. (1969) Introduction à la théorie analytique des nombres premiers, Dunod, 1969.Google Scholar
  2. Borevich, Z. and Shafarevich, I. (1966) Theory of numbers, Academic Press, 1966.Google Scholar
  3. Cassels, J. and Fröhlich, A. (1967) Algebraic number theory, Academic Press 1967.Google Scholar
  4. Chandrasekharan, K. (1968) Introduction to analytic number theory, Springer, 1968.Google Scholar
  5. Eichler, M. (1963) Einführung in die Theorie der algebraischen Zahlen und Funktionen, Birkhäuser, 1963.Google Scholar
  6. Eisenstein, G. (1967) Mathematische Abhandlungen, Holms Verlag, 1967.Google Scholar
  7. Hardy, G. H. (1940) Ramanujan, Cambridge Univ. Press, 1940.Google Scholar
  8. Hardy, G. H. and Wright, E. M. (1945) An introduction to the theory of numbers, Oxford Univ. Press, 1945.Google Scholar
  9. Hecke, E. (1938) Dirichlet series, modular functions and quadratic forms, Edwards Bros., 1938.Google Scholar
  10. Lang, S. (1968) Algebraic number theory, Addison-Wesley, 1968.Google Scholar
  11. Minkowski, H. (1967) Gesammelte Abhandlungen, Chelsea, 1967.Google Scholar
  12. Samuel, P. (1967) Théorie algébrique des nombres, Hermann, 1967.Google Scholar
  13. Serre, J.-P. (1970) Cours d’arithmétique, Presses Universitaires, 1970.Google Scholar

B. Basic references for analytical methods

  1. Bellman, R. (1961) A brief introduction to theta functions, Holt, Rinehart and Winston, 1961.Google Scholar
  2. Bochner, S. (1932) Vorlesungen über Fouriersche Integrale, Leipzig, 1932.Google Scholar
  3. Erdelyi, A. (editor), (1953) Higher transcendental functions, vol. 1, McGraw Hill, 1953.Google Scholar
  4. Igusa, J. (1972) Theta functions, Springer, 1972.Google Scholar
  5. Mumford, D. (1983) Tata Lectures on Theta I, Prog. Math., vol. 28, Birkhäuser, 1983.Google Scholar
  6. Jacobi, C. G. (1829) Fundamenta Nova Theoriae Functionum Ellipticarum, in Gesammelte Werke, tome I, Königsberg, 1829 (reprinted by Chelsea).Google Scholar
  7. Titchmarsh, E. C. (1930) The zeta-function of Riemann, Cambridge Univ. Press, 1930.Google Scholar
  8. Titchmarsh, E. C. (1937) Introduction to the theory of Fourier integrals, Oxford Univ. Press, 1937.Google Scholar
  9. Whittaker, E. T. and Watson, G. N. (1935) A course of modern analysis, Cambridge Univ. Press, 1935.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Pierre Cartier

There are no affiliations available

Personalised recommendations