Advertisement

Energetics and Dynamics of Solvation and Fission in Clusters

  • U. Landman
  • R. N. Barnett
  • A. Nitzan
  • G. Rajagopal
Conference paper
Part of the Springer Series in Nuclear and Particle Physics book series (SSNUCLEAR)

Abstract

The nature, properties, and behavior of physical systems depend upon the identity of the constituents and the nature of interactions between them and upon the degree of aggregation and the ambient conditions. Investigations of the energy level structure, elementary excitations, morphology (shape or crystallographical structure), phase transformations and dynamics of finite systems, and their dependence upon the degree and form of aggregation, are common endeavors in the physical sciences spanning a wide spectrum of interaction forms and strengths, spatial dimensions, and temporal scales. Thus the evolution of energetic, structural, dynamical and thermodynamic properties of matter as a function of the degree of aggregation (i.e., size of the system, or number of particles composing it) is of fundamental interest in diverse fields cutting across the disciplines of atomic, molecular, nuclear, intermediate and high-energy particle physics, astrophysics, chemical dynamics, materials science and condensed matter physics. In this context it is of interest to note close analogies between some of the properties and phenomena exhibited by atomic and molecular clusters and those found in atomic nuclei, despite gross differences in the nature of binding in these systems and their spatial extent.

Keywords

Monte Carlo Water Cluster Solvation Shell Excess Electron Reorganization Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1 (a).
    See review by W. A. de Heer, W. D. Knight, M. Y. Chou and M. L. Cohen in Solid State Physics 40, 93 (1987);CrossRefGoogle Scholar
  2. 1 (b).
    For a recent investigation of the electronic shell structure in large metallic clusters and references to earlier studies see H. Gohlich, T. Lange, T. Bergmann and T. P. Martin, Phys. Rev. Lett. 65, 748 (1990); see also, J. L. Persson, R. L. Whetten, H.-P. Cheng and R. S. Berry (preprint);ADSCrossRefGoogle Scholar
  3. 1(c).
    For recent work on cold sodium clusters and references to earlier studies, see E. C. Honea, M. L. Homer, J. L. Persson, and R. L. Whetten, Chem. Phys. Lett. 171, 147 (1990).ADSCrossRefGoogle Scholar
  4. 2.
    K. Clemenger, Phys. Rev. B 32, 1359 (1985).ADSCrossRefGoogle Scholar
  5. 3.
    W. Ekardt and Z. Penzar, Phys. Rev. B 38, 4273 (1988).ADSCrossRefMATHGoogle Scholar
  6. 4.
    W. A. de Heer, K. Selby, V. Kressin, J. Masuri, M. Volhmer, A. Chatelain, and W. D. Knight, Phys. Rev. Lett. 59, 1805 (1987).ADSCrossRefGoogle Scholar
  7. 5.
    C. Brechignac, Ph. Cahuzac, F. Calier, and J. Leygnier, Chem. Phys. Lett. 164, 433 (1989).ADSCrossRefGoogle Scholar
  8. 6.
    C. R. C. Wang, S. Pollack, and M. M. Kappes, Chem. Phys. Lett. 166, 26 (1990).ADSCrossRefGoogle Scholar
  9. 7.
    M. J. Puska, R. M. Nieminen, and M. Manninen, Phys. Rev. B 31, 3486 (1985).ADSCrossRefGoogle Scholar
  10. 8.
    W. Ekardt, Phys. Rev. B 31, 6360 (1985)ADSCrossRefGoogle Scholar
  11. 9.
    D. E. Beck, Phys. Rev. B 35, 7325 (1987).ADSCrossRefGoogle Scholar
  12. 10.
    C. Yannouleas, R. A. Broglia, M. Brack, and P. F. Bortignon, Phys. Rev. Lett. 63, 255 (1989)ADSCrossRefGoogle Scholar
  13. 10a.
    C. Yannouleas, J. M. Pacheco, and R. A. Broglia, Phys. Rev. B 41, 6088 (1990).ADSCrossRefGoogle Scholar
  14. 11.
    V. Bonacic-Koutecky, P. Fantucci, and J. Koutecky, Chem. Phys. Lett. 166, 32 (1990)ADSCrossRefGoogle Scholar
  15. 11a.
    V. Bonacic-Koutecky, M. M. Kappes, P. Fantucci, and J. Koutecky, Chem. Phys. Lett. 170, 26 (1990).ADSCrossRefGoogle Scholar
  16. 12.
    See a review by O. Echt in Physics and Chemistry of Small Clusters, edited by P. Jena, B. K. Rao, and S. N. Khanna (Plenum, New York, 1987), p. 623 and references therein.CrossRefGoogle Scholar
  17. 13.
    C. Brechignac, Ph. Cahuzac, F. Carlier, and J. Leyghier, Phys. Rev. Lett. 63, 1368 (1989)ADSCrossRefGoogle Scholar
  18. 13a.
    C. Brechignac, Ph. Cahuzac, J. Leygnier, and J. Weiner, J. Chem. Phys. 90, 1492 (1989).ADSCrossRefGoogle Scholar
  19. 14.
    C. Brechignac, Ph. Cahuzac, F. Calier, and M. de Frutos, Phys. Rev. Lett. 64, 2893 (1990).ADSCrossRefGoogle Scholar
  20. 15.
    For experimental studies of Pb+n+ see: P. Pfau, K. Sattler, R. Pflaum, and E. Recknagel, Phys. Lett. 104A, 262 (1984)ADSGoogle Scholar
  21. 15a.
    W. Schulze, B. Winer, and I. Goldenfeld, Phys. Rev. B 38, 12937 (1988).ADSCrossRefGoogle Scholar
  22. 16.
    For experimental studies of fission of charged Gold clusters see W. A. Saunders, Phys. Rev. Lett. 64, 3046 (1990).ADSCrossRefGoogle Scholar
  23. 17.
    B. K. Rao, P. Jena, M. Manninen, and R. M. Nieminen, Phys. Rev. Lett. 58, 1188 (1987).ADSCrossRefGoogle Scholar
  24. 18.
    C. Baladron, J. M. Lopez, M. P. Iniquez, and J. A. Alonzo, Z. Phys. D11, 323 (1989).ADSCrossRefGoogle Scholar
  25. 19.G. Durand, J. P. Daudley, and J. P. Malrieu, J. Phys. (Paris) 47, 1335 (1986).CrossRefGoogle Scholar
  26. 20.
    S. N. Khanna, F. Reuse, and J. Buttet, Phys. Rev. Lett. 61, 535 (1988).ADSCrossRefGoogle Scholar
  27. 21.
    S. Saito and M. L. Cohen, Phys. Rev. B 38, 1123 (1988).ADSCrossRefGoogle Scholar
  28. 22.
    M. P. Iniguez, J. A. Alonso, A. Rubio, M. J. Lopez, and L. C. Balbas, Phys. Rev. B 41, 5595 (1990).ADSCrossRefGoogle Scholar
  29. 23.
    M. P. Iniguez, J. A. Alonso, M. A. Allen, and L. C. Balbas, Phys. Rev. B 34, 2152 (1986).ADSCrossRefGoogle Scholar
  30. 24.
    Y. Ishii, S. Ohnishi and S. Sugano, Phys. Rev. B 33, 5271 (1986).ADSCrossRefGoogle Scholar
  31. 25.
    S. Sugano, A. Tamura, and Y. Ishii, Z. Phys. D 12, 213 (1989).ADSCrossRefGoogle Scholar
  32. 26.
    R. N. Barnett, U. Landman, A. Nitzan and G. Rajagopal, J. Chem. Phys. 94, 608 (1991).ADSCrossRefGoogle Scholar
  33. 27.
    G. Rajagopal, R. N. Barnett and U. Landman, Phys. Rev. Lett. (1991).Google Scholar
  34. 28.
    A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, London, 1975).Google Scholar
  35. 29.
    H.-P. Kaukonen, U. Landman and C. L. Cleveland, J. Chem. Phys. (1991).Google Scholar
  36. 30.
    See U. Landman, W. D. Luedtke and R. N. Barnett in Many-Atom Interactions in Solids, Eds. R. M. Nieminen, M. J. Puska and M. J. Manninen (Springer, Berlin, 1990), p. 103.CrossRefGoogle Scholar
  37. 31.
    F. F. Abraham, Adv. in Phys. 35, 1 (1986)ADSCrossRefGoogle Scholar
  38. 31a.
    F. F. Abraham, J. Vac. Sci. Technol. B2, 534 (1984).Google Scholar
  39. 32(a).
    See reviews: U. Landman, R. N. Barnett, C. L. Cleveland, J. Luo, D. Scharf and J. Jortner, in Few-Body Systems and Multiparticle Dynamics (AIP Conf. Proc. 162), edited by D. A. Micha, (AIP, New York, 1987), p. 200;Google Scholar
  40. 32(b).
    J. Jortner D. Scharf and U. Landman in Elemental and Molecular Clusters, edited by G. Benedek and M. Pachioni (Springer, Berlin, 1988) p. 148;CrossRefGoogle Scholar
  41. 32(c).
    R. N. Barnett, U. Landman, G. Rajagopal and A. Nitzan, Israel J. Chem. 30, 85 (1990);Google Scholar
  42. 32(d).
    U. Landman, in Recent Developments in Computer Simulation Studies in Condensed Matter Physics, edited by D. P. Landau, K. K. Mon, and H. B. Schuttler (Springer, Berlin, 1988) p. 144;CrossRefGoogle Scholar
  43. 32(e).
    B. J. Berne, Annu. Rev. Phys. Chem. 37, 401 (1986)ADSCrossRefGoogle Scholar
  44. 32(f).
    R. Car, M. Parrinello and W. Andreoni, in Microclusters, edited by S. Sugano. Y. Nishina, and S. Ohnishi (Springer, Berlin, 1987) p. 134.Google Scholar
  45. 33.
    M. P. Allen and D. J. Tildesly, Computer Simulations of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
  46. 34.
    R. S. Berry, T. L. Beck, H. L. Davis, and J. Jellinek, Adv. Chem. Phys. (1988); see also C. L. Cleveland and U. Landman, J. Chem. Phys. 94, 7376 (1991).Google Scholar
  47. 35.
    C. L. Cleveland, U. Landman and R. N. Barnett, Phys. Rev. B39, 117 (1989).ADSGoogle Scholar
  48. 36.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).MATHGoogle Scholar
  49. 37.
    D. Chandler and P. G. Wolynes, J. Chem. Phys. 79, 4078 (1981)ADSCrossRefGoogle Scholar
  50. 37a.
    D. Chandler, J. Phys. Chem. 88, 3400 (1984).CrossRefGoogle Scholar
  51. 38.
    M. F. Herman, E. J. Bruskin, and B. J. Berne, J. Chem. Phys. 76, 5150 (1982) .ADSCrossRefGoogle Scholar
  52. 39.
    M. Parrinello and A. Rahman, J. Chem. Phys. 80, 860 (1984).ADSCrossRefGoogle Scholar
  53. 40.
    A. Wallqvist, D. Thirumalai and B. J. Berne, J. Chem. Phys. 85, 1583 (1986).ADSCrossRefGoogle Scholar
  54. 41.
    M. Sprik and M. Klein, Comp. Phys. Rep. 7, 147 (1988).ADSCrossRefGoogle Scholar
  55. 42.
    R. N. Barnett, U. Landman, D. Scharf and J. Jortner, Acct. Chem. Res. 22, 350 (1989).CrossRefGoogle Scholar
  56. 43.
    D. Scharf, J. Jortner and U. Landman, J. Chem. Phys. 88, 4273 (1988).ADSCrossRefGoogle Scholar
  57. 44.
    U. Landman, D. Scharf and J. Jortner, Phys. Rev. Lett. 54, 1860 (1985).ADSCrossRefGoogle Scholar
  58. 45.
    R. N. Barnett, U. Landman, C. L. Cleveland and J. Jortner, Phys. Rev. Lett. 59, 811 (1987).ADSCrossRefGoogle Scholar
  59. 46.
    U. Landman, R. N. Barnett, C. L. Cleveland, D. Scharf and J. Jortner, J. Phys. Chem. 91, 4890 (1987).CrossRefGoogle Scholar
  60. 47.
    R. N. Barnett, U. Landman, C. L. Cleveland and J. Jortner, J. Chem. Phys. 88, 4421 (1988).ADSCrossRefGoogle Scholar
  61. 48.
    R. N. Barnett, U. Landman, C. L. Cleveland and J. Jortner, J. Chem. Phys. 88, 4429 (1988).ADSCrossRefGoogle Scholar
  62. 49.
    R. N. Barnett, U. Landman and J. Jortner, Chem. Phys. Lett. 145, 382 (1988).ADSCrossRefGoogle Scholar
  63. 50.
    R. N. Barnett, U. Landman, N. R. Kestner and J. Jortner, J. Chem. Phys. 88, 6670 (1988)ADSCrossRefGoogle Scholar
  64. 50a.
    R. N. Barnett, U. Landman, N. R. Kestner and J. Jortner, Chem. Phys. Lett. 148, 249 (1988).ADSCrossRefGoogle Scholar
  65. 51 (a).
    P. A. M. Dirac, Proc. Cambridge Philos. Soc. 26, 376 (1930)ADSMATHCrossRefGoogle Scholar
  66. 51(b).
    D. Kumamoto and R. Silbey, J. Chem. Phys. 75, 5164 (1981).ADSCrossRefGoogle Scholar
  67. 52 (a).
    M. D. Feit, J. A. Feit, Jr. and A. Steiger, J. Comput. Phys. 47, 412 (1982);MathSciNetADSMATHCrossRefGoogle Scholar
  68. (b).
    M. D. Feit and J. A. Fleck, Jr., J. Chem. Phys. 78, 301 (1983); 80, 2578 (1984);ADSCrossRefGoogle Scholar
  69. (c).
    D. Kosloff and R. Kosloff, J. Comput. Phys. 52, 35 (1983);ADSMATHCrossRefGoogle Scholar
  70. (d).
    see review by R. Kosloff, J. Phys. Chem. 92, 2087 (1988).CrossRefGoogle Scholar
  71. 53.
    R. Kosloff and H. Talezer, Chem. Phys. Lett. 127, 223 (1986).ADSCrossRefGoogle Scholar
  72. 54.
    R. N. Barnett, U. Landman and A. Nitzan, J. Chem. Phys. 89, 2242 (1988).ADSCrossRefGoogle Scholar
  73. 55 (a).
    R. N. Barnett, U. Landman and A. Nitzan, Phys. Rev. Lett. 62, 106 (1989)ADSCrossRefGoogle Scholar
  74. 55(b).
    J. Chem. Phys. 91, 5567 (1989).Google Scholar
  75. 56.
    See review by P. J. Rossky and J. Schnitker, J. Phys. Chem. 92, 4277 (1988).CrossRefGoogle Scholar
  76. 57.
    R. N. Barnett, U. Landman and A. Nitzan, Phys. Rev. A 38, 2178 (1988).ADSCrossRefGoogle Scholar
  77. 58.
    R. N. Barnett, U. Landman and A. Nitzan, J. Chem. Phys. 93, 6226 (1990).ADSCrossRefGoogle Scholar
  78. 59.
    R. N. Barnett, U. Landman and A. Nitzan, J. Chem. Phys. 93, 8187 (1990).ADSCrossRefMATHGoogle Scholar
  79. 60.
    R. N. Barnett et al., Phys. Rev. Lett. 64, 2933 (1990).ADSCrossRefGoogle Scholar
  80. 61(a).
    A. Selloni, P. Carenvali, R. Car and M. Parrinello, Phys. Rev. Lett. 59, 823 (1987), and Refs. 5–8 thereinADSCrossRefGoogle Scholar
  81. 61(b).
    see also D. Thirumalai, E. J. Bruskin, and B. J. Berne, J. Chem. Phys. 83, 230 (1985).ADSCrossRefGoogle Scholar
  82. 62.
    Z. Kotler, A. Nitzan and R. Kosloff, in Tunneling, edited by J. Jortner and B. Pullman (Reidel, Boston, 1986), p. 193.CrossRefGoogle Scholar
  83. 63.
    Z. Kotler, Ph.D. thesis, Tel Aviv University (1989).Google Scholar
  84. 64.
    M. Born and J. Oppenheimer, Ann. Phys. 841, 457 (1927)CrossRefGoogle Scholar
  85. 64a.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University, London, 1954).Google Scholar
  86. 65.
    See articles in Theory of the Inhomogeneous Electron Gas, edited by S. Lundqvist and N. M. March (Plenum, New York, 1983).Google Scholar
  87. 66.
    W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  88. 67.
    D. Gunnarson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).ADSCrossRefGoogle Scholar
  89. 68.
    R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985)ADSCrossRefGoogle Scholar
  90. 68a.
    for details see R. Car and M. Parrinello, in Proceedings of the NATO ARW, NATO ASI Series (Plenum, New York, 1989).Google Scholar
  91. 69.
    G. Gali, R. M. Martin, R. Car and M. Parrinello, Phys. Rev. Lett. 62, 555 (1989)ADSCrossRefGoogle Scholar
  92. 69a.
    R. Car and M. Parrinello, Phys. Rev. Lett. 60, 204 (1988).ADSCrossRefGoogle Scholar
  93. 70.
    P. Ballone, W. Andreoni, R. Car and M. Parrinello, Europhys. Lett. 8, 73 (1989).ADSCrossRefGoogle Scholar
  94. 71.
    D. R. Hamann, M. Schluter, and C. Chiang, Phys. Rev. B26, 4199 (1982).ADSGoogle Scholar
  95. 72.
    S. H. Vosko and L. Wilk, J. Phys. C 15, 2139 (1982)ADSCrossRefGoogle Scholar
  96. 72a.
    S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980).ADSCrossRefGoogle Scholar
  97. 73.
    A. Jennings, Matrix Computations for Scientists and Engineers (Widy, Chichester, 1977)Google Scholar
  98. 73a.
    R. B. Corr and A. Jennings, Int. J. Numer. Methods Eng. 10, 647 (1976).MathSciNetMATHCrossRefGoogle Scholar
  99. 74.
    E. R. Davison, J. Comput. Phys. 17, 87 (1975)ADSCrossRefGoogle Scholar
  100. 74a.
    see review of the method by D. M. Wood and A. Zunger, J. Phys. A 18, 1343 (1985).MathSciNetADSMATHCrossRefGoogle Scholar
  101. 75.
    G. W. Fernando, G.-X. Qian, M. Weinert and J. W. Davenport, Phys. Rev. B 40, 7985 (1989).ADSCrossRefGoogle Scholar
  102. 76.
    S. Sugano in Microclusters, edited by S. Sugano et al. (Springer, Berlin, 1987), p. 226.CrossRefGoogle Scholar
  103. 77.
    W. A. Saunders, Phys. Rev. Lett. 66, 840 (1991).ADSCrossRefGoogle Scholar
  104. 78.
    R. N. Barnett, U. Landman, S. Dhar, N. R. Kestner, J. Jortner and A. Nitzan, J. Chem. Phys. 91, 7797 (1989).ADSCrossRefGoogle Scholar
  105. 79.
    G. Rajagopal, R. N. Barnett and U. Landman, Phys. Rev. Lett. (1991).Google Scholar
  106. 80.
    J. Jortner, J. Chem. Phys. 30, 839 (1959).ADSCrossRefGoogle Scholar
  107. 81.
    R. N. Barnett, U. Landman and A. Nitzan, J. Chem. Phys. 90, 4413 (1989).ADSCrossRefGoogle Scholar
  108. 82.
    E. Neria, A. Nitzan, R. N. Barnett and U. Landman, Phys. Rev. Lett. (1991).Google Scholar
  109. 83.
    A. Migus, Y. Gaudel, J. L. Martin and A. Antonetti, Phys. Rev. Lett. 58, 1529 (1987)ADSCrossRefGoogle Scholar
  110. 83a.
    F. H. Long, H. Lu and K. B. Eisenthal, Phys. Rev. Lett. 64, 1469 (1990).ADSCrossRefGoogle Scholar
  111. 84.
    J. Schnitker, P. J. Rossky and G. A. Kenney-Wallace, J. Chem. Phys. 85, 2986 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • U. Landman
    • 1
  • R. N. Barnett
    • 1
  • A. Nitzan
    • 1
  • G. Rajagopal
    • 1
  1. 1.Georgia Institute of TechnologySchool of PhysicsAtlantaUSA

Personalised recommendations