Spatial and Quantitative Aspects of Spermtogenetic Tissue in Primates

  • Wolfgang Schulze
  • Andrea Salzbrunn
Part of the Schering Foundation Workshop book series (SCHERING FOUND, volume 4)


In recent years ever more sophisticated experimental procedures such as studies of Sertoli cell cultures in bicameral chamber systems (Byers et al. 1986; Janecki and Steinberger 1986), or techniques of molecular biology, have led to numerous new insights into the control of testicular function. In most of these advances, based largely on animal experiments, the molecular control mechanisms are adapted towards a particular organizational pattern in the germinal eipthelium. Such a pattern may vary considerably between different species. Especially at the evolutionary level of the non-human primates and man, there are notable structural and quantitative modifications which presumably demand a special adaptation in functional regulation. In order to establish a broader reference base for clinical and basic research, new data of spermatogenetic efficiency in non-human primates and in man are presented. These extend the comprehensive data published by Russell et al. (1990).


Sertoli Cell Seminiferous Tubule Seminiferous Epithelium Pachytene Spermatocyte Germinal Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barr AE, Moore DJ, Paulsen CA (1971) Germinal cell loss during human spermatogenesis. J Reprod Fert 25: 75–80CrossRefGoogle Scholar
  2. Breucker H (1981) Gesetzmäßigkeiten der Samenzellbildung. Ham Ärztebl 3: 97–98Google Scholar
  3. Byers SW, Hadley MA, Djakiew D, Dym M (1986) Growth and characterization of polarized monolayers of epididymal and Sertoli cells in dual environment culture chambers. J Androl 7: 59–68PubMedGoogle Scholar
  4. Chowdhury AK, Marshall G (1980) Irregular pattern of spermatogenesis in the baboon (Paio anubis) and its possible mechanism. In: Steinberger A, Steinberger E (eds) Testicular development, structure and function. Raven Press, New York, pp 129–137Google Scholar
  5. Clermont Y (1963) The cycle of the seminiferous epithelium in man. Am J Ant 112: 35–51CrossRefGoogle Scholar
  6. Clermont Y (1972) Kinetics of speramtogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev 52: 198–236PubMedGoogle Scholar
  7. Courot M, Hochereau-de Reviers MT, Ortavant R (1970) Spermatogenesis. In: The testis. Vol I. Development, anatomy, and physiology. Academic Press, New York London, pp 339–432Google Scholar
  8. Djakiew D, Dym M (1988) Pachytene spermatocyte proteins influence Sertoli cell function. Biol Reprod 39: 1193–1205PubMedCrossRefGoogle Scholar
  9. Dietrich T, Schulze W, Riemer M (1986) Untersuchung zur Gliederung des Keimepithels beim Javaneraffen (Macaca cynomolgus) mittels digitaler Bildverarbeitung. Urologe (A) 25: 179–186Google Scholar
  10. Heller OG, Clermont Y (1964) Kinetics of germinal epithelium in man. Recent Progr Horm Res 20: 545–575PubMedGoogle Scholar
  11. Holstein AF, Roosen-Runge EC (1981) Atlas of human spermatogenesis. Grosse, BerlinGoogle Scholar
  12. Janecki A, Steinberger E (1986) Polarized Sertoli cell functions in a new two-component culture system. J Androl 7: 69–71PubMedGoogle Scholar
  13. Johnson L (1986) A new approach to quantification of Sertoli cells that avoids problems associated with the irregular nucleus. Anat Rec 214: 231–237PubMedCrossRefGoogle Scholar
  14. Johnson L, Petty CS, Neaves WB (1983) Further quantification of spermatogenesis: germ cell loss during postprophase of meiosis and its relationship to daily sperm production. Biol Reprod 29: 207–215PubMedCrossRefGoogle Scholar
  15. Leidl W (1968) Steuerung und Beeinflussung der Samenbildungsprozesse. Z Tierzüchtung Züchtungsbiologie 84: 273–289CrossRefGoogle Scholar
  16. Leidl W, Waschke B (1970) Comparative aspects of the kinetics of spermiogenesis. In: Holstein AF, Horstmann E (eds) Morphological aspects of andrology. Grosse, Berlin pp 21–24Google Scholar
  17. Miething A, Holstein AF, Schulze W (1987) Megalospermatozyten: Degeneration von Spermatozyten I im alternden Hoden des Menschen. Andrologia 19 (2): 163–174PubMedCrossRefGoogle Scholar
  18. Perey B, Clermont Y, Leblond CP (1961) The wave of the seminiferous epithelium in the rat. Am J Anat 108: 47–77CrossRefGoogle Scholar
  19. Regaud C (1901) Etudes sur la structure des tubes séminifères et sur la spermatogenese chez les mammifères. Arch Anat Mikroskop 4: 101–380Google Scholar
  20. Richter PH, Schranner R (1976) Leaf arrangement. Geometry, morphogenesis, and classification. Naturwissenschaften 65: 319–327CrossRefGoogle Scholar
  21. Roosen-Runge E (1955) Untersuchungen über die Degeneration samenbildender Zellen in der normalen Spermatogenese der Ratte. Z Zellforsch 41: 221–235PubMedCrossRefGoogle Scholar
  22. Roosen-Runge EC (1974) Die Spermatogenese im Lichte der Evolution. Verh Anat Ges 68: 23–37PubMedGoogle Scholar
  23. Roosen-Runge EC (1977) The process of spermatogenesis in animals. In: Abercrombie M, Newth DR, Torrey JG (eds) Developmental and cell biology series. Cambridge University Press, Cambridge London New York MelbourneGoogle Scholar
  24. Roosen-Runge EC, Barlow FD (1953) Quantitative studies on human spermatogenesis. I. Spermatogonia. Am J Anat 93: 143–169PubMedCrossRefGoogle Scholar
  25. Rowley MJ, Heller OG (1971) Quantitation of the cells of the seminiferous epithelium of the human testis employing the Sertoli cell as a constant. Z Zellforsch mikrosk Anat 115: 461–472PubMedCrossRefGoogle Scholar
  26. Russell LD, Peterson RN (1984) Determination of the elongate spermatid-Sertoli cell ratio in various mammals. J Reprod Fertil 70: 635–641PubMedCrossRefGoogle Scholar
  27. Russell LD, Ren HP, Sinha Hikim I, Schulze W, Sinha Hikim AP (1990) A comparative study in twelve mammalian species of volume densities, volumes and numerical densities of selected testis components, emphasizing those related to the Sertoli cell. Am J Anat 188: 21–30PubMedCrossRefGoogle Scholar
  28. Schulze W (1989) Structural principles underlying the spermatogenic process in man an a non-human primate (Macaca cynomolgus). In: Holstein AF, Voigt KD, Grässlin D (eds) Reproductive biology and medicine. Diesbach Verlag, Berlin, pp 58–65Google Scholar
  29. Schulze W, Rehder U (1984) Organization and morphogenesis of the human seminiferous epithelium. Cell Tissue Res 237: 395–407PubMedCrossRefGoogle Scholar
  30. Schulze W, Riemer M, Rehder U, Höhne K-H (1986) Computer-aided three-dimensional reconstructions of the arrangement of primary spermatocytes in human seminiferous tubules. Cell Tissue Res 244: 1–8PubMedCrossRefGoogle Scholar
  31. Schulze W, Riemer M, Dietrich T (1987) Javaneraffe - Mensch: Vergleichende Untersuchung zur Organisation des Keimepithels anhand cornputergestützter Rekonstruktion von Samenkanälchen. Verh Anat Ges 81: 825–826Google Scholar
  32. Skakkebaek NE, Heller OG (1973) Quantification of human seminiferous epithelium. I. Histological studies in twenty-one fertile men with normal chromosome complements. J Reprod Fertil 32: 379–389PubMedCrossRefGoogle Scholar
  33. Wing T-Y, Christensen AK (1982) Morphometric studies on rat seminiferous tubules. Am J Anat 165: 13–25PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Wolfgang Schulze
  • Andrea Salzbrunn

There are no affiliations available

Personalised recommendations