Skip to main content

Biochemical Parameters of Cell Function

  • Chapter
Flow Cytometry and Cell Sorting

Part of the book series: Springer Laboratory ((SLM))

  • 244 Accesses

Abstract

Cellular activation is characterized by early changes in functional parameters such as depolarization of the plasma membrane potential [1], increase in the cytosolic free calcium concentration [2], alkalinization of intracellular pH [3], increased mitochondrial charge [4], production and release of reactive oxidants [5], changes in cellular glutathione content [6], and activation and release of lysosomal proteases [7, 8]. These parameters are sensitive indicators of stimulus-coupled biochemical processes even before protein synthesis, gene transcription, or cellular proliferation is induced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shapiro HM (1981) Flow cytometric probes of early events in cell activation. Cytometry 1: 301–312

    Article  PubMed  CAS  Google Scholar 

  2. Rasmussen H, Rasmussen JE (1990) Calcium as intracellular messenger: from simplicity to complexity. Curr Top Cell Regul 31: 1–109

    PubMed  CAS  Google Scholar 

  3. Madshus IH (1988) Regulation of intracellular pH in eukaryotic cells. Biochem J 250: 1–8

    PubMed  CAS  Google Scholar 

  4. Chen LB (1988) Mitochondrial membrane potential in living cells. Ann Rev Cell Biol 4: 155–181

    Article  PubMed  CAS  Google Scholar 

  5. Clark RA (1990) The human neutrophil respiratory burst oxidase. J Infect Dis 161: 1140–1147

    Article  PubMed  CAS  Google Scholar 

  6. Bilzer M, Lauterburg BH (1991) Glutathione metabolism in activated human neutrophils: stimulation of glutathione synthesis and consumption of glutathione by reactive oxygen species. Eur J Clin Invest 21: 316–322

    Article  PubMed  CAS  Google Scholar 

  7. Tschesche H, Macartney HW (1981) A new principle of regulation of enzymic activity. Activation and regulation of human polymorphonuclear leukocyte collagenase via disulfide-thiol exchange as catalysed by the glutathione cycle in a peroxidase-coupled reaction to glucose metabolism. Eur J Biochem 120: 183–190

    Article  PubMed  CAS  Google Scholar 

  8. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320: 365–376

    Article  PubMed  CAS  Google Scholar 

  9. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450

    PubMed  CAS  Google Scholar 

  10. Valet G, Raffael A, Rüssmann L (1985) Determination of intracellular calcium in vital cells by flow-cytometry. Naturwiss 72: 600–602

    Article  PubMed  CAS  Google Scholar 

  11. Rabinovitch PS, June CH, Grossmann A, Ledbetter JA (1986) Heterogeneity among T-cells in intracellular free calcium responses after mitogen stimulation with PHA or anti-CD3. Simultaneous use of indo-1 and immunofluorescence with flow cytometry. J Immunol 137: 952–961

    PubMed  CAS  Google Scholar 

  12. Minta A, Kao JPY, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264: 8171–8178

    PubMed  CAS  Google Scholar 

  13. Kao JPY, Harootunian AT, Tsien RY (1989) Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem 264: 8179–8184

    PubMed  CAS  Google Scholar 

  14. Valet G, Raffael A, Moroder L, Wünsch E, Ruhenstroth-Bauer G (1981) Fast intracellular pH determination in single cells by flow cytometry. Naturwiss 68: 265–266

    Article  PubMed  CAS  Google Scholar 

  15. Musgrove E, Rugg C, Hedley D (1986) Flow cytometric measurement of cytoplas-mic pH: a critical evaluation of available fluorochromes. Cytometry 7: 347–357

    Article  PubMed  CAS  Google Scholar 

  16. Cook JA, Fox MH (1988) Intracellular pH measurements using flow cytometry with l, 4-diacetoxy-2, 3-dicyanobenzene. Cytometry 9: 441–447

    Article  PubMed  CAS  Google Scholar 

  17. Whitaker JE, Haugland RP, Prendergast FG (1991) Spectral and photophysical studies of benzo[c]xanthene dyes: Dual emission pH sensors. Anal Biochem 194: 330–344

    Article  PubMed  CAS  Google Scholar 

  18. Sims PJ, Waggoner AS, Wang CH, Hoffman JF (1974) Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry 13: 3315–3330

    Article  PubMed  CAS  Google Scholar 

  19. Rink TJ, Montecuco C, Hesketh TR, Tsien RY (1980) Lymphocyte membrane potential assessed with fluorescent probes. Biochim Biophys Acta 595: 15–30

    Article  PubMed  CAS  Google Scholar 

  20. Wilson AH, Chused TM (1985) Lymphocyte membrane potential and Ca2+-sensitive potassium channels described by oxonol dye fluorescence measurements. J Cell Physiol 125: 72–81

    Article  PubMed  CAS  Google Scholar 

  21. Rothe G, Oser A, Valet G (1988) Dihydrorhodamine 123: a new flow cytometric indicator for respiratory burst activity in neutrophil granulocytes. Naturwiss 75: 354–355

    Article  PubMed  CAS  Google Scholar 

  22. Lund-Johansen F, Olweus J, Aarli A, Bjerknes R (1990) Signal transduction in human monocytes and granulocytes through the Pi-linked antigen CD14. FEBS Letters 273: 55–58

    Article  PubMed  CAS  Google Scholar 

  23. Roesler J, Hecht M, Freihorst J, Lohmann-Matthes ML, Emmendörffer A (1991) Diagnosis of chronic granulomatous disease and of its mode of inheritance by dihydrorhodamine 123 and flow microcytofluorometry. Eur J Pediatr 150: 161–165

    Article  PubMed  CAS  Google Scholar 

  24. Rothe G, Valet G (1990) Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2′, 7′-dichlorofluorescin. J Leukocyte Biol 47: 440–448

    PubMed  CAS  Google Scholar 

  25. Kobzik L, Godleski JJ, Brain JD (1990) Selective down-regulation of alveolar macrophage oxidative response to opsonin-independent phagocytosis. J Immunol 144: 4312–4319

    PubMed  CAS  Google Scholar 

  26. Perticarari S, Presani G, Mangiarotti MA, Banfi E (1991) Simultaneous flow cytometric method to measure phagocytosis and oxidative products by neutrophils. Cytometry 12: 687–693

    Article  PubMed  CAS  Google Scholar 

  27. Treumer J, Valet G (1986) Flow-cytometric determination of glutathione alterations in vital cells by o-phthaldialdehyde (OPT) staining. Exp Cell Res 163: 518–524

    Article  PubMed  CAS  Google Scholar 

  28. Rice GC, Bump EA, Shrieve DC, Lee W, Kovacs M (1986) Quantitative analysis of cellular glutathione by flow cytometry utilizing monochlorobimane: some applications to radiation and drug resistance in vitro and in vivo. Cancer Res 46: 6105–6110

    PubMed  CAS  Google Scholar 

  29. Shrieve DC, Bump EA, Rice GC (1988) Quantitative analysis of cellular glutathione among cells derived from a murine fibrosarcoma or a human renal carcinoma detected by low cytometric analysis. J Biol Chem 263: 14107–14114

    PubMed  CAS  Google Scholar 

  30. Ublacker GA, Johnson JA, Siegel FL, Mulcahy RT (1991) Influence of glutathione S-transferases on cellular glutathione determination by flow cytometry using monochlorobimane. Cancer Res 51: 1783–1788

    PubMed  CAS  Google Scholar 

  31. Cook JA, Iype SN, Mitchell JB (1991) Differential sensitivity of monochlorobimane for isozymes of human and rodent glutathione S-transferases. Cancer Res 51: 1606–1612

    PubMed  CAS  Google Scholar 

  32. Puchalski RB, Manoharan TH, Lathrop AL, Fahl WE (1991) Recombinant glutathione S-transferase (GST) expressing cells purified by flow cytometry on the basis of a GST-catalyzed intracellular conjugation of glutathione to monochlorobimane. Cytometry 12: 651–655

    Article  PubMed  CAS  Google Scholar 

  33. O’Connor JE, Kimler BF, Morgan MC, Tempas KJ (1988) A flow cytometric assay for intracellular nonprotein thiols using mercury orange. Cytometry 9: 529–532

    Article  PubMed  Google Scholar 

  34. Poot M, Kavanagh TJ, Kang HCh, Haugland RP, Rabinovitch PS (1991) Flow cytometric analysis of cell cycle-dependent changes in cell thiol level by combining a new laser dye with Hoechst 33342

    Google Scholar 

  35. Rothe G, Klingel S, Assfalg-Machleidt I, Machleidt W, Zirkelbach Ch, Mangel WF, Valet G (1992) Flow cytometric analysis of protease activities in vital cells. Biol Chem Hoppe-Seyler (Suppl.): in press

    Google Scholar 

  36. Leytus SP, Patterson WL, Mangel WF (1983) New class of sensitive and selective fluorogenic substrates for serine proteinases. Amino acid and dipeptide derivatives of rhodamine. Biochem J 215: 253–260

    PubMed  CAS  Google Scholar 

  37. Leytus SP, Melhado LL, Mangel WF (1983) Rhodamine-based compounds as fluorogenic substrates for serine proteinases. Biochem J 209: 299–307

    PubMed  CAS  Google Scholar 

  38. DiVirgilio F, Stendahl O, Pittet D, Lew PD, Pozzan T (1990) Cytoplasmic calcium in phagocyte activation. Curr Topics Membranes Transport 35: 179–205

    Article  CAS  Google Scholar 

  39. Orrenius S, McConkey DJ, Bellomo G, Nicotera P (1989) Role of Ca2+ in toxic cell killing. TIPS 10: 281–285

    PubMed  CAS  Google Scholar 

  40. Poenie M, Alderton J, Steinhardt R, Tsien R (1986) Calcium rises briefly and throughout the cell at the onset of anaphase. Science 233: 886–889

    Article  PubMed  CAS  Google Scholar 

  41. Thomas JA, Buchsbaum RN, Zimniak A, Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18: 2210–2218

    Article  PubMed  CAS  Google Scholar 

  42. Rothe G, Valet G (1990) Flow cytometric characterization of oxidative processes in neutrophils and monocytes with dihydrorhodamine 123, 2′, 7′-dichlorofluorescin and hydroethidine In: Burger G, Oberholzer M, Vooijs GP (eds) Advances in analytical cellular pathology. Elsevier, Amsterdam, pp 313–314

    Google Scholar 

  43. Rothe G, Emmendörffer A, Oser A, Roesler J, Valet G (1991) Flow cytometric measurement of the respiratory burst activity of phagocytes using dihydrorhodamine 123. J mmunol Methods 138: 133–135

    Article  CAS  Google Scholar 

  44. Cross AR (1987) The inhibitory effects of some iodonium compounds on the Superoxide generating system of neutrophils and their failure to inhibit diaphorase activity. Biochem Pharmacol 36: 489–493

    Article  PubMed  CAS  Google Scholar 

  45. Bass DA, Parce JW, Dechatelet LR, Szejda P, Seeds MC, Thomas M (1983) Flow cytometric studies of oxidative burst formation by neutrophils: a graded response to membrane stimulation. J Immunol 130: 1910–1917

    PubMed  CAS  Google Scholar 

  46. Meister A (1988) Glutathione metabolism and its selective modification. J Biol Chem 263: 17205–17208

    PubMed  CAS  Google Scholar 

  47. Morrow CS, Cowan KH (1990) Glutathione S-transferases and drug resistance. Cancer Cells 2: 15–22

    PubMed  CAS  Google Scholar 

  48. Neuschwander-Tetri BA, Roll FJ (1989) Glutathione measurement by high-performance liquid chromatography separation and fluorometric detection of the glutathione-orthophthalaldehyde adduct. Anal Biochem 179: 236–241

    Article  PubMed  CAS  Google Scholar 

  49. Morineau G, Azoulay M, Frappier F (1989) Reaction of o-Phthalaldehyde with amino acids and glutathione. Application to high-performance liquid chromatography determination. J Chromatography 467: 209–216

    Article  CAS  Google Scholar 

  50. Kirschke H, Barrett AJ (1987) Chemistry of lysosomal proteases. In: Glaumann H, Ballard FJ (eds) Lysosomes: their role in protein breakdown. Academic Press, London, pp 193–238

    Google Scholar 

  51. Assfalg-Machleidt I, Jochum M, Nast-Kolb D, Siebeck M, Billing A, Joka T, Rothe G, Valet G, Zauner R, Scheuber HP, Machleidt W (1990) Cathepsin B-indicator for the release of lysosomal cysteine proteinases in severe trauma and inflammation. Biol Chem Hoppe-Seyler 371 (Suppl.): 211–222

    PubMed  CAS  Google Scholar 

  52. Green DJ, Shaw E (1981) Peptidyl diazomethyl ketones are specific inactivators of thiol proteinases. J Biol Chem 256: 1923–1928

    PubMed  CAS  Google Scholar 

  53. Powers JC (1986) Serine proteases of leukocyte and mast cell origin: substrate specificity and inhibition of elastase, chymases, and tryptases. Adv Inflammation Res 11: 145–157

    Google Scholar 

  54. Dolbeare FA, Smith RE (1977) Flow cytometric measurement of peptidases with use of 5-nitrososalicylaldehyde and 4-methoxy-beta-naphthylamine derivatives. Clin Chem 23: 1485–1491

    PubMed  CAS  Google Scholar 

  55. Murphy RF (1985) Analysis and isolation of endocytic vesicles by flow cytometry and sorting: demonstration of three kinetically distinct compartments involved in fluid-phase endocytosis. Proc Natl Acad Sci USA 82: 8523–8526

    Article  PubMed  CAS  Google Scholar 

  56. Krepela E, Bártek J, Skalková D, Vicar J, Rasnick D, Taylor-Papadimitriou J, Hallowes RC (1987) Cytochemical and biochemical evidence of cathepsin B in malignant, transformed and normal breast epithelial cells. J Cell Sei 87: 145–154

    CAS  Google Scholar 

  57. Van Noorden CJF, Vogels IMC, Smith RE (1989) Localization and cytophotometric analysis of cathepsin B activity in unfixed and undecalcified cryostat sections of whole rat knee joints. J Histochem Cytochem 37: 17–624

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rothe, G., Valet, G. (1992). Biochemical Parameters of Cell Function. In: Radbruch, A. (eds) Flow Cytometry and Cell Sorting. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02785-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02785-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02787-5

  • Online ISBN: 978-3-662-02785-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics