Skip to main content

Toxic Extracellular Enzymes

  • Chapter

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 13))

Abstract

This Chapter describes the methods used for the assay, identification and determination of “toxic” action of extracellular enzymes of microbial (mainly fungal) and higher plant origin involved in plant pathogenesis. Methods used for the general characterization of an enzyme, such as its catalytic properties, molecular weight, amino acid composition, protein sequence analysis, have been omitted. A detailed account of the theoretical and practical aspects of enzyme characterization may be found in most biochemical textbooks (e.g., Segel 1975; Cornish-Bowden 1979; Page 1984; Darbre 1986; Franks 1988).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Goukh AA, Greve LC, Labavitch JM (1983) Purification and partial characterisation of “Bartlett” pear fruit polygalacturonase inhibitors. Physiol Plant Pathol 23: 111–122

    CAS  Google Scholar 

  • Akazawa T, Hara-Nishimura I (1985) Topographic aspects of biosynthesis, extracellular secretion and intracellular storage of proteins in plant cells. Annu Rev Plant Physiol 36: 441–472

    CAS  Google Scholar 

  • Albertsson PA (1986) Partition of cell particles and macromolecules, 3rd edn. J Wiley and Sons, New York

    Google Scholar 

  • Andrews AT (1986) Electrophoresis — theory, techniques, and biochemical and clinical applications. Clarendon, Oxford

    Google Scholar 

  • Andro T, Chambost J-P, Kotoujansky A, Cattaneo J, Bertheau Y, Barras F, Van Gijsegem F, Coleno A (1984) Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase. J Bacteriol 160: 1199–1203

    PubMed  CAS  Google Scholar 

  • Bailey JA, Mansfield JW (eds) (1982) Phytoalexins. J Wiley and Sons, New York

    Google Scholar 

  • Beisiegel U (1986) Protein blotting. Electrophoresis 7: 1–18

    CAS  Google Scholar 

  • Bell AA (1981) Biochemical mechanisms of disease resistance. Annu Rev Plant Physiol 32: 21–81

    CAS  Google Scholar 

  • Benhamou N, Grenier J, Asselin A, Legrand M (1989) Immunogold localization of ß-1,3-glucanases in two plants infected by vascular wilt fungi. Plant Cell 1: 1209–1221

    PubMed  CAS  Google Scholar 

  • Benhamou N, Joosten MHAJ, De Wit PJGM (1990) Subcellular localization of chitinase and of its potential substrate in tomato root tissues infected by Fusarium oxysporum f. sp. radicis-lycopersici. Plant Physiol 92: 1108–1120

    PubMed  CAS  Google Scholar 

  • Biely P, Markovic O, Mislovicovd D (1985) Sensitive detection of endo-1,4–13-glucanases and endo-1,4–13-xylanases in gels. Anal Biochem 144: 147–151

    PubMed  CAS  Google Scholar 

  • Boller T (1986) Role of proteolytic enzymes in interactions of plants with other organisms. In: Dalling M (ed) Plant proteolytic enzymes. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Boller T (1987) Hydrolytic enzymes in plant disease resistance. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, molecular and genetic perspectives, vol 2. Macmillan, New York, pp 385–414

    Google Scholar 

  • Boller T, Mauch F (1988) Colorimetric assay for chitinase. Methods Enzymol 161: 430–435

    CAS  Google Scholar 

  • Boller T, Métraux JP (1988) Extracellular localization of chitinase in cucumber. Physiol Mol Plant Pathol 33: 11–16

    CAS  Google Scholar 

  • Boller T, Gehri A, Mauch F, Vögeli U (1983) Chitinase in bean leaves: induction by ethylene, purification, properties, and possible function. Planta 157: 22–31

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    PubMed  CAS  Google Scholar 

  • Broekaert WF, Van Parijs J, Allen AK, Peumans WJ (1988) Comparison of some molecular, enzymatic and antifungal properties of chitinases from thorn-apple, tobacco and wheat. Physiol Mol Plant Pathol 33: 319–331

    CAS  Google Scholar 

  • Broekaert WF, Van Parijs J, Leyns F, Joos H, Peumans WJ (1989) A chitin-binding lectin from stinging nettle rhizomes with antifungal properties. Science 245: 1100–1102

    PubMed  CAS  Google Scholar 

  • Brown RE, Jarvis KL, Hyland KJ (1989) Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal Biochem 180: 136–139

    PubMed  CAS  Google Scholar 

  • Burnette WN (1981) “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate — polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodicated protein A. Anal Biochem 112:195–203

    Google Scholar 

  • Cabib E (1988) Assay for chitinase using tritiated chitin. Methods Enzymol 161: 424–426

    CAS  Google Scholar 

  • Canevascini G, Gattlen C (1981) A comparative investigation of various cellulase assay procedures. Biotechnol Bioeng 23: 1573–1590

    CAS  Google Scholar 

  • Chatterjee AK, Starr MP (1977) Donor strains of the soft-rot bacterium Erwinia chrysanthemi and conjugational transfer of the pectolytic capacity. J Bacteriol 132: 862–862

    PubMed  CAS  Google Scholar 

  • Chavira R, Burnett TJ, Hageman JH (1984) Assaying proteinases with Azocoll. Anal Biochem 136: 446–450

    PubMed  CAS  Google Scholar 

  • Clancy FG, Coffey D (1977) Acid phosphatase and protease release by the insectivorous plant Drosera rotundifolia. Can J Bot 55: 480–488

    CAS  Google Scholar 

  • Collmer A (1987) Pectic enzymes and bacterial invasion of plants. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, molecular and genetic perspectives, vol 2. Macmillan, New York, pp 253–284

    Google Scholar 

  • Collmer A, Keen NT (1986) The role of pectic enzymes in plant pathogenesis. Annu Rev Phytopathol 24: 383–409

    CAS  Google Scholar 

  • Collmer A, Schoedel C, Roeder DL, Ried JL, Rissler JF (1985) Molecular cloning in Escherichia colt of Erwinia chrysanthemi genes encoding multiple forms of pectate lyase. J Bacteriol 161: 913–920

    PubMed  CAS  Google Scholar 

  • Collmer A, Ried JL, Mount MS (1988) Assay methods for pectic enzymes. Methods Enzymol 161: 329–335

    CAS  Google Scholar 

  • Cornish-Bowden A (1979) Fundamentals of enzyme kinetics. Butterworths, London

    Google Scholar 

  • Coté F, Letarte J, Grenier J, Trudel J, Asselin A (1989) Detection of 13–1,3-glucanase activity after native polyacrylamide gel electrophoresis: application to tobacco pathogenesis-related proteins. Electrophoresis 10: 527–529

    PubMed  Google Scholar 

  • Coughlan MP (1988) Staining techniques for the detection of the individual components of cellulolytic enzyme systems. Methods Enzymol 160: 135–144

    CAS  Google Scholar 

  • Cutting JA (1984) Gel protein stains: phosphoproteins. Methods Enzymol 104: 451455

    Google Scholar 

  • Darbre A (ed) (1986) Practical protein chemistry — a handbook. Wiley and Sons, New York

    Google Scholar 

  • Darvill AG, Albersheim P (1984) Phytoalexins and their elicitors — a defence against microbial infection in plants. Annu Rev Plant Physiol 35: 243–275

    CAS  Google Scholar 

  • Dean RA, Timberlake WE (1989) Regulation of the Aspergillus nidulans pectate lyase gene (pe1A). Plant Cell 1: 275–284

    PubMed  CAS  Google Scholar 

  • Dey PM, Campillo ED (1984) Biochemistry of the multiple forms of glycosidases in plants. Adv Enzymol Relat Areas Mol Biol 56: 141–249

    PubMed  CAS  Google Scholar 

  • Dickman MB, Patil SS, Kolattukudy PE (1982) Purification and characterization of an extracellular cutinolytic enzyme from Colletotrichum gloeosporioides on Carica papaya. Physiol Plant Pathol 29: 333–347

    Google Scholar 

  • Dickman MB, Podila GK, Kolattukudy PE (1989) Insertion of cutinase gene into a wound pathogen enables it to infect intact host. Nature 342: 446–448

    CAS  Google Scholar 

  • Doerner KC, White BA (1990) Detection of glycoproteins separated by nondenaturing polyacrylamide gel electrophoresis using the periodic acid-Schiff stain. Anal Biochem 187: 147–150

    PubMed  CAS  Google Scholar 

  • Dunn MJ (ed) (1986) Gel electrophoresis of proteins. Wright, Bristol

    Google Scholar 

  • Edreva AM, Georgieva ID (1980) Biochemical and histochemical investigations of a-and (3-glucosidase activity in an infectious disease, a physiological disorder and in senescence of tobacco leaves. Physiol Plant Pathol 17: 237–243

    CAS  Google Scholar 

  • Eriksson K-E, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eriksson S, Bhikhabhai R, Hammar L (1989) Analysis of glycoproteins — lectin binding of HIV glycoproteins. PhastSystem Application File No. 301, Pharmacia LKB Biotechnology, Uppsala, Sweden

    Google Scholar 

  • Etzler ME (1985) Plant lectins: molecular and biological aspects. Annu Rev Plant Physiol 36: 209–234

    CAS  Google Scholar 

  • Evans CH, Ridella JD (1984) An evaluation of fluorometric proteinase assays which employ fluorescamine. Anal Biochem 142: 411–420

    PubMed  CAS  Google Scholar 

  • Flurkey WH, Kolattukudy PE (1981) In vitro translation of cutinase in mRNA: evidence for a precursor form of an extracellular fungal enzyme. Arch Biochem Biophys 212: 154–161

    PubMed  CAS  Google Scholar 

  • Franks F (ed) (1988) Characterisation of proteins. Human Press, Clifton, New Jersey

    Google Scholar 

  • Friedenauer S, Berlet HH (1989) Sensitivity and variability of the Bradford protein assay in the presence of detergents. Anal Biochem 178: 263–268

    PubMed  CAS  Google Scholar 

  • Gander JE (1984) Gel protein stains: glycoproteins. Methods Enzymol 104: 447–451

    PubMed  CAS  Google Scholar 

  • Gershoni JM (1988) Protein blotting: a manual. Methods Biochem Anal 33: 1–58

    PubMed  CAS  Google Scholar 

  • Ghose TK (ed) (1984) Measurement of cellulase activities. Commission on Biotechnology, International Union of Pure and Applied Chemistry, Biochemical Engineering Research Centre, Indian Institute of Technology, New Delhi, India

    Google Scholar 

  • Glenn AR (1976) Production of extracellular proteins by bacteria. Annu Rev Microbiol 30: 41–62

    PubMed  CAS  Google Scholar 

  • Glenney J (1986) Antibody probing of Western blots which have been stained with indian ink. Anal Biochem 156: 315–319

    PubMed  CAS  Google Scholar 

  • Glumoff T, Harvey PJ, Molinari S, Goble M, Frank G, Palmer JM, Smit JDG, Leisola MSA (1990) Lignin peroxidase from Phanerochaete chrysosporium. Molecular and kinetic characterization of isozymes. Eur J Biochem 187: 515–520

    Google Scholar 

  • Goksoyr J, Eriksen J (1980) Cellulases. In: Rose AH (ed) Microbial enzymes and bioconversions, Economic microbiology, vol 5. Academic Press, New York, pp 283–330

    Google Scholar 

  • Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40: 347–369

    CAS  Google Scholar 

  • Hames BD, Rickwood D (eds) (1989) Gel electrophoresis of proteins — a practical approach, 2nd edn. IRL Press, Oxford

    Google Scholar 

  • Harris ELV, Angal S (eds) (1989) Protein purification methods — a practical approach. IRL Press, Oxford

    Google Scholar 

  • Heftmann E (ed) (1983) Chromatography. Elsevier, Amsterdam

    Google Scholar 

  • Heimgartner U, Kozulic B, Mosbach K (1989) Polyacrylic polyhydrazides as reagents for detection of glycoproteins. Anal Biochem 181: 182–189

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison Y, Heslop-Harrison J (1981) The digestive glands of Pinguicula: structure and cytochemistry. Ann Bot 47: 293–319

    Google Scholar 

  • Heukeshoven J, Dernick R (1988) Improved silver staining procedure for fast staining in PhastSystem development unit. I. Staining of sodium dodecyl sulfate gels. Electophoresis 9: 28–32

    Google Scholar 

  • Hill HD, Straka JG (1988) Protein determination using bicinchoninic acid in the presence of sulfhydryl reagents. Anal Biochem 170: 203–208

    PubMed  CAS  Google Scholar 

  • Howe JG, Hershey JWB (1981) A sensitive immunoblotting method for measuring protein synthesis initiation factor levels in lysates of Escherichia coll. J Biol Chem 256: 1283612839

    Google Scholar 

  • International Union of Biochemistry (1984) Enzyme nomenclature. Academic Press, London

    Google Scholar 

  • Janson J-C, Rydén L (eds) (1989) Protein purification — principles, high resolution methods, and application. VCH Publishers, New York

    Google Scholar 

  • Jensen HS (1984) Adsorbed soluble [3H]elastin as substrate for proteinase activity. A new microassay technique. Biochem J 218: 645–648

    PubMed  CAS  Google Scholar 

  • Jones TM, Anderson AJ, Albersheim P (1972) Host-pathogen interactions. IV. Studies on the polysaccharide-degrading enzymes secreted by Fusarium oxysporum f. sp. lycopersici. Physiol Plant Pathol 2: 153–166

    CAS  Google Scholar 

  • Joosten MHAJ, De Wit PJGM (1989) Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn Fulvia fulva) as 1,3-f3-glucanases and chitinases. Plant Physiol 89: 945–951

    PubMed  CAS  Google Scholar 

  • Kalisz HM (1988) Microbial proteinases. Adv Biochem Eng Biotechnol 36: 1–65

    PubMed  CAS  Google Scholar 

  • Kauffmann S, Legrand M, Geoffroy P, Fritig B (1987) Biological function of pathogenesis- related proteins: four PR proteins of tobacco leaves have 1,3–13-glucanase activity. EMBO J 6: 3209–3212

    PubMed  CAS  Google Scholar 

  • Keen NT, Dahlbeck D, Staskawicz B, Belser W (1984) Molecular cloning of pectate lyase genes from Erwinia chrysanthemi EC16 and their high level expression in Escherichia coll. J Bacteriol 159: 825–831

    PubMed  CAS  Google Scholar 

  • Kollatukudy PE (1985) Enzymatic penetration of the plant cuticle by fungal pathogens. Annu Rev Phytopathol 23: 223–250

    Google Scholar 

  • Kollatukudy PE, Purdy RE, Maiti IB (1981) Cutinases from fungi and pollen. Methods Enzymol 71: 652–664

    Google Scholar 

  • Kombrik E, Schröder M, Hahlbrock K (1988) Several pathogenesis-related proteins in potato are (3–1,3-glucanases and chitinases. Proc Natl Acad Sci USA 85: 782–786

    Google Scholar 

  • Künnecke W, Kalisz HM, Schmid RD (1989) Flow injection zymography — a novel procedure for the on-line detection of enzyme activity. Anal Lett 22: 1471–1484

    Google Scholar 

  • Lamb CJ, Lawton MA, Dron M, Dixon RA (1989) Signals and transduction mechanisms for activation of plant defences against microbial attack. Cell 56: 215–224

    PubMed  CAS  Google Scholar 

  • Legler G, Müller-Platz CM, Mentges-Hettkamp M, Pflieger G, Jülich E (1985) On the chemical basis of the Lowry protein determination. Anal Biochem 150: 278–287

    PubMed  CAS  Google Scholar 

  • Legrand M, Kauffmann S, Geoffroy P, Fritig B (1987) Biological function of pathogenesis-related proteins: four tobacco pathogenesis-related proteins are chitinases. Proc Natl Acad Sci USA 84: 6750–6754

    PubMed  CAS  Google Scholar 

  • Lin TS, Kollatukudy PE (1978) Induction of a biopolyester hydrolase (cutinase) by low

    Google Scholar 

  • levels of cutin monomers in Fusarium solani f. sp. pisi. J Bacteriol 133:942–951 Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the

    Google Scholar 

  • Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • MacKenzie CR, Williams RE (1984) Detection of cellulase and xylanase activity in isoelectric-focused gels using agar substrate gels supported on plastic film. Can J Microbiol 30: 1522–1525

    CAS  Google Scholar 

  • Maiti IB, Koilatukudy PE (1979) Prevention of fungal infection of plants by specific inhibition of cutinase. Science 205: 507–508

    PubMed  CAS  Google Scholar 

  • Mauch F, Hadwiger LA, Boller T (1984) Ethylene: symptom, not signal for the induction of chitinase and (3–1,3-glucanase in pea pods by pathogens and elicitors. Plant Physiol 76: 607–611

    PubMed  CAS  Google Scholar 

  • Mauch F, Hadwiger LA, Boller T (1988a) Antifungal hydrolases in pea tissue. I. Purification and characterisation of two chitinases and two 13–1,3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiol 87: 325–333

    PubMed  CAS  Google Scholar 

  • Mauch F, Mauch-Mani B, Boller T (1988b) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and ß-1,3-glucanase. Plant Physiol 88: 936–942

    PubMed  CAS  Google Scholar 

  • McHale AP, Hackett TJ, McHale LM (1989) Specific zymogram staining procedure for the exocellobiohydrolase components produced by Talaromyces emersonii CBS 814.70. Enzyme Microb Technol 11: 17–20

    CAS  Google Scholar 

  • Mellor RB, Mörschel E, Werner D (1984) Legume root response to symbiotic infection: enzymes of the peribacteroid space. Z Naturforsch 39c: 123–125

    Google Scholar 

  • Miller GL, Blum R, Glennon WE, Burton AL (1960) Measurement of carboxymethylcellulase activity. Anal Biochem 1: 127–132

    CAS  Google Scholar 

  • Munoz G, Marshall S, Cabrera M, Horvat A (1988) Enhanced detection of glycoproteins in polyacrylamide gels. Anal Biochem 170: 491–494

    PubMed  CAS  Google Scholar 

  • Nakamura K, Tanaka T, Kuwahara A, Takeo K (1985) Microassay for proteins on nitrocellulose filter using dye-staining procedure. Anal Biochem 148: 311–319

    PubMed  CAS  Google Scholar 

  • North MJ (1982) Comparative biochemistry of the proteinases of eukaryotic microorganisms. Microbiol Rev 46: 308–340

    PubMed  CAS  Google Scholar 

  • Ohtakara A (1988) Viscosimetric assay for chitinase. Methods Enzymol 161: 426–430

    CAS  Google Scholar 

  • Ostoa-Saloma P, Ramirez J, Perez-Montfort R (1989) Measurement of casein digestion by a fluorometric method. Anal Biochem 176: 239–243

    PubMed  CAS  Google Scholar 

  • Page MI (ed) (1984) The chemistry of enzyme action. Elsevier, Amsterdam

    Google Scholar 

  • Payne JW (ed) (1980) Microorganisms and nitrogen sources. J Wiley and Sons, London

    Google Scholar 

  • Peterson GL (1979) Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem 100: 201–220

    PubMed  CAS  Google Scholar 

  • Priest FG (1984) Extracellular enzymes. Aspects of microbiology ser 9. Van Nostrand Reinhold (UK) Co Ltd, Berkshire, England

    Google Scholar 

  • Prieur B, Russo-Marie F (1988) An automated western blot analysis using the PhastSystem. Anal Biochem 172: 338–343

    PubMed  CAS  Google Scholar 

  • Racusen D (1984) Lipid acyl hydrolase of patatin. Can J Bot 62: 1640–1644

    CAS  Google Scholar 

  • Renganathan V, Usha SN, Lindenburg F (1990) Cellobiose-oxidizing enzymes from the lignocellulose-degrading basidomycete Phyanerochaete chrysosporium: interaction with microcrystalline cellulose. Appl Microbiol Biotechnol 32: 609–613

    CAS  Google Scholar 

  • Rexovâ-Benkovâ L, Markovic 0 (1976) Pectic enzymes. Adv Carbohydr Chem Biochem 33: 323–385

    Google Scholar 

  • Ried JL, Collmer A (1985) Activity stain for rapid characterisation of pectic enzymes in isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gels. Appl Environ Microbiol 50: 615–622

    PubMed  CAS  Google Scholar 

  • Ried JL, Collmer A (1986) Comparison of pectic enzymes produced by Erwinia chrysanthemi, Erwinia carotovora, subsp. carotovora, and Erwinia carotovora, subsp. atroseptica. Appl Environ Microbiol 52: 305–310

    PubMed  CAS  Google Scholar 

  • Rinderknecht H, Geokas MC, Silverman P, Haverback BJ (1968) A new sensitive method for the determination of proteolytic activity. Clin Chim Acta 21: 197–203

    PubMed  CAS  Google Scholar 

  • Roby D, Esquerre-Tugaye M-T (1987) Induction of chitinases and of translatable mRNA for these enzymes in melon plants infected with Colletotrichum lagenarium. Plant Sci 52: 175–185

    CAS  Google Scholar 

  • Rodriguez-Vico F, Martinez-Cayuela M, Garcia-Pergrin E, Ramirez H (1989) A procedure for eliminating interferences in the Lowry method of protein determination. Anal Biochem 183: 275–278

    PubMed  CAS  Google Scholar 

  • Rohringer R, Holden DW (1985) Protein blotting: detection of proteins with colloidal gold, and of glycoproteins and lectins with biotin-conjugated and enzyme probes. Anal Biochem 144: 118–127

    PubMed  CAS  Google Scholar 

  • Rombouts FM, Pilnik W (1980) Pectic enzymes. In: Rose AH (ed) Microbial enzymes and bioconversions. Economic microbiology, vol 5. Academic Press, New York, pp 227–282

    Google Scholar 

  • Root DD, Reisler E (1989) Copper iodide staining of protein blots on nitrocellulose membranes. Anal Biochem 181: 250–253

    PubMed  CAS  Google Scholar 

  • Ryan CA (1984) Systemic responses to wounding. In: Kosuge T, Nester EW (eds) Plant-microbe interactions, vol 1. Macmillan, New York, pp 307–320

    Google Scholar 

  • Sacher JA, Tseng J, Williams R, Cabello A (1982) Wound-induced RNAse activity in sweet potato. Plant Physiol 69: 1060–1065

    PubMed  CAS  Google Scholar 

  • Saddler JN, Khan AW (1981) Cellulolytic enzyme system of Acetivibrio cellulolyticus. Can J Microbiol 27: 288–294

    PubMed  CAS  Google Scholar 

  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367

    CAS  Google Scholar 

  • Schwarz WH, Bronnenmeier K, Gräbnitz F, Staudenbauer WL (1987) Activity staining of cellulases in polyacrylamide gels containing mixed linkage 3-glucans. Anal Biochem 164: 72–77

    PubMed  CAS  Google Scholar 

  • Scopes RK (1987) Protein purification — principles and practise, 2nd edn. Springer Berlin Heidelberg New York

    Google Scholar 

  • Segel IH (1975) Enzyme kinetics. Wiley and Sons, New York

    Google Scholar 

  • Sexton R, Roberts JA (1982) Cell biology of abscission. Annu Rev Plant Physiol 33: 133–162

    CAS  Google Scholar 

  • Shaykh M, Soliday C, Kolattukudy PE (1977) Proof for the production of cutinase by Fusarium solani f. pisi during penetration into its host, Pisum sativum. Plant Physiol 60: 170–172

    PubMed  CAS  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85

    PubMed  CAS  Google Scholar 

  • Solheim B, Fjellheim KE (1984) Rhizobial polysaccharide-degrading enzymes from roots of legumes. Physiol Plant 62: 11–17

    CAS  Google Scholar 

  • Soliday CL, Flurkey WH, Okita TW, Kolattukudy PE (1984) Cloning and structure determination of cDNA for cutinase, an enzyme involved in fungal penetration of plants. Proc Natl Acad Sci USA 81: 3939–3943

    PubMed  CAS  Google Scholar 

  • Spiro RG (1966) Analysis of sugars found in glycoproteins. Methods Enzymol 8: 3–26

    CAS  Google Scholar 

  • Stoessl A (1983) Secondary plant metabolites in preinfectional and postinfectional resistance. In: Bailey JA, Deverall BJ (eds) The dynamics of host defence. Academic Press, New York, pp 71–122

    Google Scholar 

  • Suelter CH (1985) A practical guide to enzymology. J Wiley and Sons, New York

    Google Scholar 

  • Switzer RC, Merril CR, Shifrin S (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem 98: 231–237

    PubMed  CAS  Google Scholar 

  • Tien M, Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol 161: 238–249

    CAS  Google Scholar 

  • Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178: 362–366

    PubMed  CAS  Google Scholar 

  • Veluthambi K, Mahadevan S, Maheshwari R (1981) Trehalose toxicity in Cuscuta reflexa. Plant Physiol 68: 1369–1374

    PubMed  CAS  Google Scholar 

  • Vögeli U, Meins F, Boller T (1988) Co-ordinated regulation of chitinase and 3–1,3glucanase in bean leaves. Planta 174: 364–372

    Google Scholar 

  • Walter H, Brooks DE, Fisher D (eds) (1985) Partitioning in aqueous two-phase systems: theory, methods, uses, and applications in biotechnology. Academic Press, London

    Google Scholar 

  • Wargo PM (1975) Lysis of the cell wall of Armillaria mellea by enzymes from forest trees. Physiol Plant Pathol 5: 99–105

    CAS  Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244: 4406–4412

    PubMed  CAS  Google Scholar 

  • Westergaard JL, Hackbarth C, Treuhaft MW, Robterts RC (1980) Detection of proteinases in electrophoretograms of complex mixtures. J Immunol Methods 34: 167175

    Google Scholar 

  • Woloshuk CP, Kollatukudy PE (1986) Mechanism by which contact with plant cuticle triggers cutinase gene expression in the spores of Fusarium solani f. sp. pisi. Proc Natl Acad Sci USA 83: 1704–1708

    PubMed  CAS  Google Scholar 

  • Wong P, Barbeau A, Roses AD (1985) A method to quantitate Coomassie blue-stained proteins in cylindrical polyacrylamide gels. Anal Biochem 150: 288–293

    PubMed  CAS  Google Scholar 

  • Wood TM, McCrae SI (1979) Synergism between enzymes involved in the solubilisation of native cellulose. Adv Chem Ser 181: 181–209

    Google Scholar 

  • Wood WA, Kellogg ST (eds) (1988) Methods in enzymology, vol 160. Academic Press, New York

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalisz, H.M., Kalisz, M.E. (1992). Toxic Extracellular Enzymes. In: Linskens, H.F., Jackson, J.F. (eds) Plant Toxin Analysis. Modern Methods of Plant Analysis, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02783-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02783-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08090-6

  • Online ISBN: 978-3-662-02783-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics