Applied Group Theory 1926–1935

  • Brian R. Judd
Part of the The Collected Works of Eugene Paul Wigner book series (WIGNER, volume A / 1)

Abstract

The articles written before 1931 can be regarded to a large extent as precursors to Wigner’s seminal work “Gruppentheorie and ihre Anwendung auf die Quantenmechanik der Atomspektren”, [1] which appeared in that year. The importance of this book can scarcely be overstated. In the preface to the English edition [2], which was published 28 years later, Wigner remarks that there was a great reluctance among physicists toward accepting group-theoretical arguments and the group-theoretical point of view. He also comments that this antipathy has subsequently vanished. One of the reasons for this is, of course, the influence that his book had on a generation of physicists. However, at the time of its publication, and for some years afterwards, opposition to group theory was real enough. In the rush to fit theory to experiment, simplicity in the mathematical treatment counted for more than elegance and generality. The uncompromising tone of Weyl’s treatise on group theory and quantum mechanics [3] scarcely made the subject more accessible to physicists. They were more impressed by the success Slater [4] achieved in obtaining expressions for the energies of spectroscopic terms by elementary mathematical methods. Condon and Shortley [5] explicitly rejected the group-theoretical approach. Their algebraic methods were extended by Racah [6], and is was not until he published his fourth article [7] on complex spectra that group theory became an accepted part of theoretical atomic spectroscopy.

Keywords

Sugar Nickel Methane Mercury Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Wigner: Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Vieweg, Braunschweig 1931CrossRefGoogle Scholar
  2. [2]
    E. P. Wigner: Group Theory. Academic Press, New York 1959MATHGoogle Scholar
  3. [3]
    H. Weyl: Gruppentheorie und Quantenmechanik. Hirzel, Leipzig 1928MATHGoogle Scholar
  4. [4]
    J. C. Slater: The Theory of Complex Spectra. Phys. Rev. 34, 1293–1322 (1929)ADSCrossRefMATHGoogle Scholar
  5. [5]
    E. U. Condon and G. H. Shortley: The Theory of Atomic Spectra. Cambridge University Press, Cambridge 1935Google Scholar
  6. [6]
    G. Racah: Theory of Complex Spectra I—III. Phys. Rev. 61, 186–197 (1942); ibid. 62, 438–462 (1942); ibid. 63, 367–382 (1943)Google Scholar
  7. [7]
    G. Racah: Theory of Complex Spectra IV. Phys. Rev. 76, 1352–1365 (1949)ADSCrossRefMATHGoogle Scholar
  8. [8]
    E. Wigner: Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen. Z. Phys. 43 624–652 (1927); volume I, part IIGoogle Scholar
  9. [9]
    J. v. Neumann and E. Wigner: Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons, III. Z. Phys. 51 844–858 (1928); volume I, part IIGoogle Scholar
  10. [10]
    E. Wigner: Berichtigung zu der Arbeit: Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen. Z. Phys. 45 601–602 (1927); volume I, part IIGoogle Scholar
  11. [11]
    C. L. B. Shudeman: Equivalent Electrons and their Spectroscopic Terms. J. Franklin Inst. Philadelphia 224, 501–518 (1937)CrossRefGoogle Scholar
  12. [12]
    J. v. Neumann and E. Wigner: Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons, II. Z. Phys. 49 73–94 (1928); volume I, part IIGoogle Scholar
  13. [13]
    J. v. Neumann and E. Wigner: Zur Erklärung einiger Eigenschaften der Spektren aus der Quantenmechanik des Drehelektrons, I. Z. Phys. 47, 203–220 (1928); volume I, part IIGoogle Scholar
  14. [14]
    E. Wigner: Uber nicht kombinierende Terme in der neueren Quantentheorie, I. Z. Phys. 40 492–500 (1926); volume I, part IIGoogle Scholar
  15. [15]
    E. Wigner: Uber nicht kombinierende Terme in der neueren Quantentheorie, II. Z. Phys. 40 883–892 (1927); volume I, part IIGoogle Scholar
  16. [16]
    D.E. Rutherford: Substitutional Analysis. Edinburgh University Press, Edinburgh 1948, equation (16.1)Google Scholar
  17. [17]
    W. Heisenberg and P. Jordan: Anwendung der Quantenmechanik auf das Problem der anomalen Zeemaneffekte. Z. Phys. 37, 263–277 (1926)ADSCrossRefMATHGoogle Scholar
  18. [18]
    E. Back and A. Landé: Zeemaneffekt und Multipletstruktur der Spektrallinien. Springer, Berlin 1925, p. 79CrossRefGoogle Scholar
  19. [19]
    A. R. Edmonds: Angular Momentum in Quantum Mechanics. Princeton University Press, Princeton 1957Google Scholar
  20. [20]
    H. C. Burger and H. B. Dorgelo: Beziehung zwischen inneren Quantenzahlen und Intensitäten von Mehrfachlinien. Z. Phys. 23, 258–268 (1924)ADSCrossRefGoogle Scholar
  21. [21]
    F. Hund: Linienspektren und periodisches System der Elemente. Springer, Berlin 1927CrossRefMATHGoogle Scholar
  22. [22]
    C. Eckart: The Application of Group Theory to the Quantum Dynamics of Monatomic Systems. Rev. Mod. Phys. 2, 305–380 (1930)ADSCrossRefMATHGoogle Scholar
  23. [23]
    E. P. Wigner: On the Matrices which Reduce the Kronecker Products of Representations of S. R. [Simply Reducible] Groups, unpublished manuscript of 1940, printed in Quantum Theory of Angular Momentum, eds. L. C. Biedenharn and H. van Dam. Academic Press, New York 1965; volume I, part IIIGoogle Scholar
  24. [24]
    H. Minh Die Intensitäten der Zeemankomponenten. Z. Phys. 31, 340–354 (1925)Google Scholar
  25. [25]
    R. de L. Kronig: Uber die Intensität der Mehrfachlinien und ihrer Zeemankomponenten. Z. Phys. 31, 885–897 (1925)ADSCrossRefMATHGoogle Scholar
  26. [26]
    P. Jordan and E. Wigner: Über das Paulische Aquivalenzverbot. Z. Phys. 47 631–651 (1928); volume I, part IIGoogle Scholar
  27. [27]
    P. Jordan and O. Klein: Zum Mehrkörperproblem der Quantentheorie. Z. Phys. 45, 751–765 (1927)ADSCrossRefMATHGoogle Scholar
  28. [28]
    P. A. M. Dirac: On the Theory of Quantum Mechanics. Proc. Roy. Soc. London A 112, 661–677 (1927)ADSCrossRefGoogle Scholar
  29. [29]
    H. A. Kramers: Quantum Mechanics. North-Holland, Amsterdam 1958, p. 328Google Scholar
  30. [30]
    W. Heisenberg: Zum Paulischen Ausschliessungsprinzip. Ann. Phys. 10, 888–904 (1931)CrossRefGoogle Scholar
  31. [31]
    J. Sugar and C. Corliss: Atomic Energy Levels of the Iron-Period Elements: Potassium through Nickel. J. Phys. Chem. Reference Data 14, Supp. no. 2 (1985)Google Scholar
  32. [32]
    M. H. Johnson: The Vector Model and the Pauli Principle. Phys. Rev. 43, 627631 (1933); Note on Almost Closed Shells. Phys. Rev. 43, 632–635 (1933)Google Scholar
  33. [33]
    D. M. Brink and G. R. Satchler: Holes and Particles in Shell Models. Nuovo Cimento 4, 549–557 (1956)CrossRefGoogle Scholar
  34. [34]
    A. de-Shalit and I. Talmi: Nuclear Shell Theory. Academic Press, New York 1963Google Scholar
  35. [35]
    R. D. Lawson: Theory of the Nuclear Shell Model. Clarendon, Oxford 1980Google Scholar
  36. [36]
    B. R. Judd: Second Quantization and Atomic Spectroscopy. Johns Hopkins, Baltimore 1967Google Scholar
  37. [37]
    M. C. Downer and A. Bivas: Third-and Fourth-Order Analysis of the Intensities and Polarization Dependence of Two-Photon Absorption Lines of Gd3+ in LaF3 and Aqueous Solutions. Phys. Rev. B 28, 3677–3696 (1983)ADSCrossRefGoogle Scholar
  38. [38] J. C. Slater: Book Review (of Ref. [36]).
    Am. J. Phys. 36, 69 (1968)Google Scholar
  39. [39]
    E. Wigner and E. E. Witmer: Uber die Struktur der zweiatomigen Molekelspektren nach der Quantenmechanik. Z. Phys. 51 859–886 (1928); volume I, part IIGoogle Scholar
  40. [40]
    F. Hund: Zur Deutung der Molekelspektren, IV. Z. Phys. 51, 759–795 (1928)ADSCrossRefMATHGoogle Scholar
  41. [41]
    R. de L. Kronig: Zur Deutung der Bandspektren. Z. Phys. 46, 814–825 (1928)ADSCrossRefMATHGoogle Scholar
  42. [42]
    F. A. Jenkins: Report of Subcommittee f (Notation for the Spectra of Diatomic Molecules)of the Joint Commission for Spectroscopy. J. Opt. Soc. Am. 43, 425426 (1953)Google Scholar
  43. [43]
    W. A. Bingel: Theorie der Molekülspektren. Verlag Chemie, Weinheim 1967Google Scholar
  44. [44]
    E. Wigner: Uber die Erhaltungssätze in der Quantenmechanik. Nachrichten d. Gesell. d. Wissenschaften z. Göttingen, Math.-Phys. Klasse 375–381 (1927); volume I, part IIGoogle Scholar
  45. [45]
    F. Hund: Zur Deutung der Molekelspektren, I. Z. Phys. 40 742–764 (1927), figure 11Google Scholar
  46. [46]
    R. Döpel, K. Gailer, and E. Wigner: Über die experimentelle Prüfung des Spinerhaltungssatzes. Phys. Z. 35 336–337 (1934); volume I, part IIGoogle Scholar
  47. [47]
    R. Döpel and K. Gaiter: Experimentelle Prüfung des Spin-Erhaltungssatzes beim Atomstoss. Physik. Z. 34, 827–831 (1933)Google Scholar
  48. [48]
    K. Gailer: Uber die wechselseitige Lichtanregung bei den Atomstössen He bzw. H auf Be, Mg, Ca, Sr, Ba. Z. Phys. 108, 580–591 (1938)ADSCrossRefGoogle Scholar
  49. [49]
    K. Gailer: Experimenteller Beitrag zur Frage der Gültigkeit des Spinerhaltungssatzes. Physik. Z. 39, 407–409 (1938)Google Scholar
  50. [50]
    W. Kuhn: Uber die Gesamtstärke der von einem Zustande ausgehenden Absorptionslinien. Z. Phys. 33, 408–412 (1925)ADSCrossRefMATHGoogle Scholar
  51. [51]
    F. Reiche and W. Thomas: Uber die Zahl der Dispersionselektronen, die einem stationären Zustand zugeordnet sind. Z. Phys. 34, 510–525 (1925)ADSCrossRefMATHGoogle Scholar
  52. [52]
    E. Wigner: Uber eine Verschärfung des Summensatzes. Phys. Z. 32 450–453 (1931); volume I, part IIGoogle Scholar
  53. [53]
    V. Fock: Uber die Anwendbarkeit des quantenmechanischen Summensatzes. Z. Phys. 89, 744–749 (1934)ADSCrossRefGoogle Scholar
  54. [54]
    E. Wigner: Über die Eigenschwingungen symmetrischer Systeme. Nachrichten d. Gesell. d. Wissenschaften z. Göttingen, Math.-Phys. Klasse 133–146 (1930); volume I, part IIGoogle Scholar
  55. [55]
    R. S. Knox and A. Gold: Symmetry in the Solid State. Benjamin, New York 1964, p. 177MATHGoogle Scholar
  56. [56]
    J. E. Rosenthal and G. M. Murphy: Group Theory and the Vibrations of Poly-atomic Molecules. Rev. Mod. Phys. 8, 317–346 (1936)ADSCrossRefGoogle Scholar
  57. [57]
    D. M. Dennison: Molecular Structure of Methane. Astrophys. J. 62, 84–103 (1925)ADSCrossRefGoogle Scholar
  58. [58]
    H.A. Jahn: Rotation und Schwingung des Methanmoleküls. Ann. Phys. 23, 529–556 (1935)CrossRefGoogle Scholar
  59. [59]
    L. Tisza: Zur Deutung der Spektren mehratomiger Moleküle. Z. Phys. 82, 48–72 (1933)ADSCrossRefGoogle Scholar
  60. [60]
    E. Wigner: Über die Operation der Zeitumkehr in der Quantenmechanik. Nachrichten d. Gesell. d. Wissenschaften z. Göttingen, Math.-Phys. Klasse 546–559 (1932); volume I, part IIGoogle Scholar
  61. [61]
    H. A. Kramers: Théorie Générale de la Rotation Paramagnétique dans les Cristaux. Proc. K. Ned. Akad. Wet. 33, 959–972 (1930)MATHGoogle Scholar
  62. [62]
    J. S. Bell: Particle-Hole Conjugation in the Shell Model. Nucl. Phys. 12, 117–124 (1959)CrossRefMATHGoogle Scholar
  63. [63]
    G. Racah: Theory of Complex Spectra. Phys. Rev. 63 371 (1943), equation (19)Google Scholar
  64. [64]
    J.0. Hirschfelder and E. Wigner: Separation of Rotational Coödinates from the Schrödinger Equation for N particles. Proc. Nat. Acad. Sci. 21 113–119 (1935); volume I, part IIGoogle Scholar
  65. [65]
    C. Eckart: The Kinetic Energy of Polyatomic Molecules. Phys. Rev. 46, 383–387 (1934)ADSCrossRefGoogle Scholar
  66. [66]
    J. H. Van Vleck: The Rotational Energy of Polyatomic Molecules. Phys. Rev. 47, 487–494 (1935)ADSCrossRefGoogle Scholar
  67. [67]
    C.F. Curtiss, J.O. Hirschfelder, and F. T. Adler: The Separation of the Rotational Coordinates from the N-Particle Schroedinger Equation. J. Chem. Phys. 18, 1638–1641 (1950)MathSciNetADSCrossRefGoogle Scholar
  68. [68]
    C. Eckart: Some Studies Concerning Rotating Axes and Polyatomic Molecules. Phys. Rev. 47, 552–558 (1935)ADSCrossRefGoogle Scholar
  69. [69]
    P. R. Bunker: Molecular Symmetry and Spectroscopy. Academic Press, New York 1979, pp. 137–153Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Brian R. Judd

There are no affiliations available

Personalised recommendations