High Frequency Sound Fields

  • Leonid M. Brekhovskikh
  • Oleg A. Godin
Part of the Springer Series on Wave Phenomena book series (SSWAV, volume 10)


In this chapter we shall discuss the fundamentals of the ray method, in particular, its origination from the wave theory of the sound field. Monochromatic waves in a stationary, inhomogeneous in three dimensions, moving medium are considered. Some relevant questions were considered in [Ref. 5.1, Chaps. 8,10] but only in the case when the field dependence on the horizontal coordinates is harmonic. It will be shown below that many results obtained in [5.1] are also valid in the general case. A rather full description of the geometrical acoustics of inhomogeneous (including nonstationary) media at rest as well as its numerous applications can be found in [5.2,3]. Special aspects of ray theory for elastic waves in solids have been discussed in [5.4].


Transfer Equation Power Flow Sound Field Zeroth Approximation Eikonal Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1
    L.M. Brekhovskikh, O.A. Godin: Acoustics of Layered Media. 1: Plane and Quasi-Plane Waves, Springer Ser. Wave Phen. Vol. 5 (Springer, Berlin, Heidelberg 1990)CrossRefGoogle Scholar
  2. 5.2
    Yu.A. Kravtsov, Yu.I. Orlov: Geometrical Optics of Inhomogeneous Media, Springer Ser. Wave Phen., Vol.6 (Springer, Berlin, Heidelberg 1989)Google Scholar
  3. 5.3
    V.M. Babic, V.S. Buldyrev, I.A. Molotkov: Prostranstvenno-Vremennoi Luchevoi Metod: Linei-nyye i Nelineinyye Volny (Space-Time Ray Method: Linear and Nonlinear Waves) (Leningrad State University, Leningrad 1985)Google Scholar
  4. 5.4
    V. Cemeny, I.A. Molotkov, I. Psencik: Ray Method in Seismology (Univerzita Karlova, Praha 1977)Google Scholar
  5. 5.5
    L.D. Landau, E.M. Lifshitz: Course of Theoretical Physics, Vol. 6, Fluid Mechanics (Pergamon, New York 1982)Google Scholar
  6. 5.6
    V.M. Babic, V.S. Buldyrev: Asymptotic Methods in Short-Wave Diffraction Theory, Springer Ser. Wave Phenom., Vol.4 (Springer, Berlin, Heidelberg 1989)Google Scholar
  7. 5.7
    E. Kamke: Handbook of Ordinary Differential Equations (Chelsea, New York 1971)Google Scholar
  8. 5.8
    G.A. Korn, T.M. Korn: Mathematical Handbook for Scientists and Engineers, 2nd ed. (McGraw-Hill, New York 1968)Google Scholar
  9. 5.9
    D.I. Blokhintsev: Acoustics of an Inhomogeneous Moving Medium (Brown University Press, Providence, R.I. 1956)Google Scholar
  10. 5.10
    V.E. Ostashev: Izv. AN SSSR. Fiz.Atmos. Okeana 21, 358–373 (1985) [English transl.: Izv. Acad.Sci. USSR. Atmos. Oceanic Phys. 21, 274–285 (1985)]ADSGoogle Scholar
  11. 5.11
    O.A. Godin, D.Yu. Mikhin, S.Ya. Molchanov: Izv. AN SSSR. Fiz. Atmos. Okeana, to be publishedGoogle Scholar
  12. 5.12
    L.A. Chernov: Akust. Zh. 4, 299–306 (1958) [English transl.: Sov. Phys. Acoust. 4, N4 (1959)]Google Scholar
  13. 5.13
    O.S. Golod, N.S. Grigor’eva: Akust. Zh. 28, 758–762 (1982) [English transl.: Sov. Phys. Acoust. 28, 449 (1980)]Google Scholar
  14. 5.14
    V.E. Ostashev: Akust. Zh. 31, 225–229 (1985) [English transl.: Sov. Phys. Acoust. 31, N2 (1985)]Google Scholar
  15. 5.15
    V.A. Polyanskaya: Akust. Zh. 31, 628–632 (1985) [English transl.: Sov. Phys. Acoust. 31, 376–379 (1985)]MathSciNetGoogle Scholar
  16. 5.16
    CI. Chessel: J. Acoust. Soc. Am. 53, 83–87 (1973)ADSCrossRefGoogle Scholar
  17. 5.17
    E.T. Kornhauser: J. Acoust. Soc. Am. 25, 945–949 (1953)MathSciNetADSCrossRefGoogle Scholar
  18. 5.18
    T.B. Sanford: J. Acoust. Soc. Am. 56, 1118–1121 (1974)ADSCrossRefGoogle Scholar
  19. 5.19
    R.J. Thompson: J. Acoust. Soc. Am. 51, 1675–1682 (1972ADSCrossRefGoogle Scholar
  20. 5.19a
    RJ. Thompson: J. Acoust. Soc. Am. 55, 729–737 (1974)ADSCrossRefGoogle Scholar
  21. 5.20
    E.H. Brown, F.F. Hall: Rev. Geophys. Space Phys. 16, 47–110 (1978);ADSCrossRefGoogle Scholar
  22. 5.21
    C.H.E. Warren: J.Sound Vibr. 1, 175–178 (1964)ADSCrossRefMATHGoogle Scholar
  23. 5.22
    E.R. Franchi, M.J. Jacobson: J. Acoust. Soc. Am. 52, 316–331 (1972)ADSCrossRefGoogle Scholar
  24. 5.22a
    B.K. Newhall, M.J. Jacobson, W.L. Siegmann: J. Acoust. Soc. Am. 67, 1997–2010 (1980)ADSCrossRefMATHGoogle Scholar
  25. 5.23
    B. Hallberg, C. Larsson, S. Israelson: J. Acoust. Soc. Am. 83, 2059–2068 (1988)ADSCrossRefGoogle Scholar
  26. 5.24
    J.A. Mercer: J. Acoust. Soc. Am. 84, 999–1006 (1988)ADSCrossRefGoogle Scholar
  27. 5.25
    F. Walkden, M. West: J. Acoust. Soc. Am. 84, 321–326 (1988)ADSCrossRefGoogle Scholar
  28. 5.26
    V.M. Babic, N.S. Grigor’eva: “O Tochechnykh Istochnikakh Kolebanii i Diffuzii v Dvizhu-shchikhsya Sredakh” (“On Point Sources of Vibrations and Diffusion in Moving Media”), in Volny i Difraktsiya-85. IX Vsesoyuznyi Simpoziumpo Difraktsii i Rasprostraneniyu Voln (Waves and Diffraction-85. IX All-Union Symposium on Diffraction and Wave Propagation), Vol. 2 (Tbilisi State University, Tbilisi 1985) pp. 232–235Google Scholar
  29. 5.27
    V.E. Ostashev: Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 25, 899–916 (1989) [English, transl.: Izv. Acad. Sci. USSR. Atmos. Oceanic Phys. 25, N9 (1989)]MathSciNetADSGoogle Scholar
  30. 5.28
    L.M. Brekhovskikh, I.D. Ivanov: Dokl. Akad. Nauk. SSSR. 83, 545–548(1952)Google Scholar
  31. 5.29
    H. Maecker: Ann. Phys. (Leipzig) 10, 115–128 (1952)MathSciNetADSMATHGoogle Scholar
  32. 5.30
    L.M. Brekhovskikh: Waves in Layered Media, 2nd ed. (Academic, New York 1980)MATHGoogle Scholar
  33. 5.31
    C.T. Tindle, G.B. Deane: J. Acoust. Soc. Am. 78, 1366–1374 (1985)ADSCrossRefGoogle Scholar
  34. 5.32
    W.L. Siegmann, MJ. Jacobson, L.D. Law: J. Acoust. Soc. Am. 81, 1741–1751 (1987)ADSCrossRefGoogle Scholar
  35. 5.33
    C.T. Tindle, E.K. Westwood: J. Acoust. Soc. Am. 81, 1752–1761 (1987)ADSCrossRefGoogle Scholar
  36. 5.34
    B.G. Katsnel’son, Yu.A. Kravtsov, V.G. Petnikov: “Osnovnyye Metody Teorii Rasprostraneniya Zvuka v Stratifitsirovannykh Gorizontal’no-Neodnorodnykh Volnovodakh s Pogloshchayushchei Granitsei” (“Basic Methods of the Theory of Sound Propagation in Stratified Range-Dependent Waveguides with an Absorbing Boundary”), in Distantsionnoye Zondirovaniye Okeana (Remote Sensing of the Ocean) (Nauka, Moscow 1986) pp. 136–166Google Scholar
  37. 5.35
    D.S. Jones: Phil. Trans. Roy. Soc. London A 255, 341–387 (1963)ADSCrossRefMATHGoogle Scholar
  38. 5.36
    D.S. Ahluwalia, J.B. Keller: “Exact and Asymptotic Representation of the Sound Field in a Stratified Ocean”, in Wave Propagation and Underwater Acoustics, J.B. Keller, J.S. Papadakis, Springer Lect. Note Phys., Vol.70 (Springer, Berlin, Heidelberg 1977) pp. 14–84CrossRefGoogle Scholar
  39. 5.37
    A.L. Virovlyanskii: Izv. Vuz. Radiofiz. 27, 1592–1594 (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Leonid M. Brekhovskikh
    • 1
  • Oleg A. Godin
    • 1
  1. 1.P. P. Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations