Advertisement

Solid Surfaces, Their Structure and Composition

  • C. Klauber
  • R. St. C. Smart
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 23)

Abstract

Awareness of the important role played by surfaces in technology has existed for some time, although it is only in the past three decades that we have been able to establish an improved understanding of their properties. In everyday life our perceptions of solid materials, and in particular their surfaces, are strongly distorted by the limitations of visible light. These wavelengths are a thousand times larger than dimensions of the surface region in which well understood bulk properties of materials break down, making way for the transitional interface with another phase, which may be gaseous, liquid or solid. Such are the alteration of bulk properties, structural and compositional, that it is not unreasonable to consider surfaces as an additional phase of matter [1.2]. Whilst this may serve as a useful general concept for surface scientists, in the various fields of technological endeavour what is thought of as a surface varies enormously, particularly in depth characterisation. Accepting the simplest definition of the surface, as the boundary defined by the outermost atomic layer separating the bulk solid from an adjacent phase, is thus inadequate in the area of practical surface technology. A more meaningful approach is to consider a selvedge layer of variable depth. In fact, the different depth regimes of the surface are defined by that depth which actually plays the definitive role in the technological application (see Table 1.1). Obviously the boundaries between these surface selvedge depths are not always clear and overlap will exist between adjacent categories.

Keywords

Auger Electron Spectroscopy Electron Energy Loss Spectroscopy Rutherford Backscatter Spectroscopy Ultraviolet Photoelectron Spectroscopy Nuclear Reaction Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.1
    D. Tabor: Surf. Sci. 89, 1 (1979)CrossRefGoogle Scholar
  2. 1.2
    P.H. Abelson: Science 234, 257 (1986)CrossRefGoogle Scholar
  3. 1.3
    W.A. Grant, R.P.M. Procter, J.L. Whitton (eds.): Surface Modification of Metals by Ion Beams ( Elsevier Sequoia, Lausanne 1987 )Google Scholar
  4. 1.4
    J.W. Rabalais, S. Kasi: Science 239, 623 (1988)CrossRefGoogle Scholar
  5. 1.5
    P. Danielson: In Kirk-Othmer Encyclopedia of Chemical Technology, Vol.20 (Wiley, New York 1982 ) pp. 811, 812Google Scholar
  6. 1.6
    F. Jona: J. Phys. C11, 4271 (1978)Google Scholar
  7. 1.7
    J. Verhoeven: J. Environ. Sci. 22, 24 (1979)Google Scholar
  8. 1.8
    R.G. Musket, W. McLean, C.A. Colmenares, D.M. Makowiecki, W.J. Siekhaus: Appl. Surf. Sci. 10, 143 (1982)CrossRefGoogle Scholar
  9. 1.9
    G.A. Somorjai, M.A. Van Hove: Structure and Bonding 38, 1 (1979)CrossRefGoogle Scholar
  10. 1.10
    G.A. Somorjai: Chemistry in Two Dimensions: Surfaces ( Cornell University Press, Ithaca 1981 )Google Scholar
  11. 1.
    V.M. Bermudez: Electronic structure of point defects on insulator surfaces. Prog. Surf. Sci. 111(1981)Google Scholar
  12. 1.12
    E.A. Colboum, W.C. Mackrodt: Theoretical aspects of 112 and CO chemicsorption on MgO surfaces. Surf. Sci. 117, 571 (1982)CrossRefGoogle Scholar
  13. 1.13
    C.F. Jones, R.A. Reeve, R. Rigg, R.L. Segall, R.St.C. Smart, P.S. Turner: Surface area and the mechanism of hydroxylation of ionic oxide surface. J. Chem. Soc. Faraday I, 80, 2609 (1984)Google Scholar
  14. 1.14
    E.A. Colbourn, W.C. Mackrodt: Irregularities at the (001) surface of MgO: topography and other aspects. Solid State Ionics 8, 221 (1983)CrossRefGoogle Scholar
  15. 1.15
    P.W. Tasker, E.A. Colbourn, W.C. Mackrodt: The segregation of isovalent impurity cations at the surfaces of MgO and CaO. J. Am. Ceram. Soc. 68, 74 (1985)CrossRefGoogle Scholar
  16. 1.16
    C. Ocal, B. Basurco, S. Ferrer: Surf. Sci. 157, 233 (1985)CrossRefGoogle Scholar
  17. 1.17
    J.E. Crowell, J.G. Chen, J.T. Yates Jr.: Surf. Sci. 165, 37 (1986)CrossRefGoogle Scholar
  18. 1.18
    C.F. McConville, D.L. Seymour, D.F. Woodruff, S. Bao: Surf. Sci. 188, 1 (1987)Google Scholar
  19. 1.19
    I.P. Batra: J. Electron. Spectrosc. Relat. Phen. 33, 175 (1984)Google Scholar
  20. 1.20
    W.A. Anderson, W.E. Haupin: In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., ed. by M. Grayson, D. Eckroth (Wiley, New York 1978 ) Vol. 2, pp. 181–183Google Scholar
  21. 1.21
    W.W. Binger, E.H. Hollingsworth, D.O. Sprowls: In Aluminum, Properties, Physical Metallurgy and Phase Diagrams, Vol. I, ed. by K.R. Van Horn (American Society for Metals, Metals Park, Ohio 1967 ) pp. 226–235Google Scholar
  22. 1.22
    L.F. Mondolfo: Aluminum Alloys: Structure and Properties (Butterworths, London 1976 ) pp. 123, 148Google Scholar
  23. 1.23
    K. Nisancioglu, O. Lunder, H. Holtan: Corrosion 41, 247 (1985)CrossRefGoogle Scholar
  24. 1.24
    E.W. Müller, T.T. Tsong: Field Ion Microscopy ( Elsevier, New York 1969 )Google Scholar
  25. 1.25
    E.W. Müller: Ann. Rev. Phys. Chem. 18, 35 (1967)CrossRefGoogle Scholar
  26. 1.26
    E. Bauer: Surf. Sci. 162, 163 (1986)Google Scholar
  27. 1.27
    A.M. Stoneham, P.W. Tasker: The Theory of Ceramic Surfaces, in Surface and Near-Surface Chemistry of Oxide Materials, ed. by J. Nowotny, L.-C. Dufour ( Elsevier, Amsterdam 1988 ) pp. 1–22Google Scholar
  28. 1.28
    K. Heinz, K. Müller: LEED-intensities–experimental progress, and new possibilities of surface structure determination, In Structural Studies of Surfaces, Springer Tracts Mod. Phys. 91 ( Springer, Berlin, Heidelberg 1982 ) pp. 1–54Google Scholar
  29. 1.29
    I.P. Batra, T. Engel, K.H. Rieder: In The Structure of Surfaces, Springer Ser. Surf. Sci., Vol. 2, ed. by M.A. van Hove, S.Y. Tong ( Springer, Berlin, Heidelberg 1985 ) p. 251Google Scholar
  30. 1.30
    T. Engel, K.H. Rieder: Structural studies of surfaces with atomic and molecular beam diffraction, In Structural Studies of Surfaces, Tracts Mod. Phys. 91 ( Springer, Berlin, Heidelberg 1982 ) pp. 55–180Google Scholar
  31. 1.31
    J. Stöhr: Surface crystallography by SEXAFS and NEXAFS, In Chemistry and Physics of Solid Surfaces V, ed. by R. Vanselow, R. Howe, Springer Ser. Chem. Phys. Vol. 35 ( Springer, Berlin, Heidelberg 1984 ) pp. 231–256Google Scholar
  32. 1.32.
    W.M. Gibson: Determination by ion scattering of atomic positions at surfaces and interfaces, In Chemistry and Physics of Solid Surfaces V, ed. by R. Vanselow, R. Howe, Springer Ser. Chem. Phys. Vol. 35 ( Springer, Berlin, Heidelberg 1984 ) pp. 427–454Google Scholar
  33. 1.33
    B.K. Teo, D.C. Joy (Eds.): EXAFS Spectroscopy - Techniques and Applications ( Plenum, New York 1981 )Google Scholar
  34. 1.
    Periodic Table of the Elements, Sargent-Welch Scientific Company, Skokie, Illinois, Catalogue Number S-18806. Based upon National Standard Reference Data System materialGoogle Scholar
  35. 1.35
    Table 1.4 is drawn from a variety of sources including tables in the references listed below, manufacturers specifications and the contributions of other authors in this book. Due to the limited scope in presenting information in such tables they should be utilized only as a guide. (a) H. Fellher-Feldegg, U. Gelius, B. Wahnberg, A.G. Nilsson, E. Basilier, K. Seigbahn: J. Electron Spectrosc. Relat. Phen. 5, 643 (1974) (b) D. Roy, J.D. Carette: In Electron Spectroscopy for Surface Analysis, ed. by H. Ibach (Springer, Berlin, Heidelberg 1977) pp. 14, 15 (c) M.W. Roberts, C.S. McKee: Chemistry of the Metal-Gas Interface (Clarendon, Oxford 1978) p. 207 (d) M.P. Seah, D. Briggs: In Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, ed. by D. Briggs, M.P. Seah (Wiley, Chichester 1983) p.12 (e) C.W. Magee: Nucl. Instrum. Meth. 191, 297 (1981)Google Scholar
  36. 1.36
    M.P. Seah, W.A. Dench: Surf. Interface Anal. 1, 2 (1979)CrossRefGoogle Scholar
  37. 1.37
    R.E. Ballard: J. Electron Spectrosc. Relat. Phen. 25, 75 (1982)CrossRefGoogle Scholar
  38. 1.38
    S. Tanuma, C.J. Powell, D.R. Penn: Surf. Sci. 192, L849 (1987)CrossRefGoogle Scholar
  39. 1.39
    C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg (eds.): Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, Minnesota 1978) pp. 42, 50Google Scholar
  40. 1.40
    M.F. Ebel: J. Electron Spectrosc. Relat. Rhenom. 22, 157 (1981)CrossRefGoogle Scholar
  41. 1.41
    C.W. Magee: Nucl. Instrum. Meth. 191, 297 (1981)CrossRefGoogle Scholar
  42. 1.42
    D.P. Leta, G.H. Morrison: Anal. Chem. 52, 514 (1980)CrossRefGoogle Scholar
  43. 1.
    Riber MIQ 256 SIMS/Ion microprobeGoogle Scholar
  44. 1.44
    P. Skeldon, K. Shimizu, G.E. Thompson, G.C. Wood: Thin Solid Films 123, 127 (1985)CrossRefGoogle Scholar
  45. 1.45
    Based on an absorption sensitivity for iron of 0.15 pg/ml/1% Abs (p.825) and a sample volume of 5µl (p. 355), In Instrumental Methods of Analysis, H.H. Willard, L.L. Merritt Jr., J.A. Dean (eds.) ( Van Nostrand, New York 1974 )Google Scholar
  46. 1.46
    D.M. Hercules, L.E. Cox, S. Osnisick, G.D. Nichols, J.C. Carver: Anal. Chem. 45, 1973 (1973)CrossRefGoogle Scholar
  47. 1.
    R.C. Weast, M.J. Asile (eds.): CRC Handbook of Chemistry and Physics,63rd edn. (CRC, Boca Raton 1982) F-161Google Scholar
  48. 1.48
    R. Browning: J. Vac. Sci. Technol. A2, 1453 (1984)Google Scholar
  49. 1.49
    P.D. Prewett, D.K. Jeffries: J. Phys. D 13, 1747 (1980)CrossRefGoogle Scholar
  50. 1.50
    N.M. Ceglio, A.M. Hawryluk, M. Schattenburg: J. Vac. Sci. Technol. B 1, 1285 (1983)Google Scholar
  51. 1.51
    I.W. Drummond, T.A. Cooper, F.J. Street: Spectrochimica Acta 40B, 801 (1985)CrossRefGoogle Scholar
  52. 1.52
    K. Yates, R.H. West: Surf. Interface Anal. 5, 217 (1983)CrossRefGoogle Scholar
  53. 1.
    For example, VG Scientific ESCALAB 20-XGoogle Scholar
  54. 1.
    For example, VG Scientific ESCASCOPEGoogle Scholar
  55. 1.55
    J.F. Evans, J.H. Gibson, J.F. Moulder, J.S. Hammond. The PHI Interface 7, 1 (1984) (Perkin Elmer, Eden Prairie, USA )Google Scholar
  56. 1.56
    M.L. Tamg, D.G. Fischer: J. Vac. Sci. Technol. 15, 50 (1978)CrossRefGoogle Scholar
  57. 1.57
    V. Thompson, H.E. Hintermann, L. Chollet: Surf. Technol. 8, 421 (1979)CrossRefGoogle Scholar
  58. 1.58
    D.R. Clark, L.L. Hench: An overview of the physical characterisation of leached surfaces, Nucl. Chem. Waste Manag. 2, 93 (1981)CrossRefGoogle Scholar
  59. 1.59
    J.W. Strojek, J. Mielczarski: Spectroscopic investigations of the solid-liquid interface by the ATR technique, Adv. Colloid Interf. Sci. 19, 309 (1983)Google Scholar
  60. 1.60
    R.F. Willis (ed.): Vibrational Spectroscopy of Adsorbates ( Springer, Berlin, Heidelberg 1980 )Google Scholar
  61. 1.61
    K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, B. Lindberg: ESCA, Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy ( Almqvist and Wiksells, Uppsala 1967 ) p. 79Google Scholar
  62. 1.62
    R. Opila, R. Gomer: Surf. Sci. 105, 41 (1981)CrossRefGoogle Scholar
  63. 1.63
    J. Hulse, J. Köppers, K. Wandelt, G. Ertl: Appl. Surf. Sci. 6, 453 (1980)CrossRefGoogle Scholar
  64. 1.64
    H.H. Madden: J. Vac. Sci. Technol. 18, 677 (1981)CrossRefGoogle Scholar
  65. 1.65
    M. Barber, R.S. Bordoli, G.J. Elliot, R.D. Sedgwick, A.N. Tyler: Anal. Chem. 54, 645A (1982)CrossRefGoogle Scholar
  66. 1.66
    CJ. Powell, N.E. Erickson, T.E. Madey: J. Electron Spectrosc. Relat. Phen. 17, 361 (1979)CrossRefGoogle Scholar
  67. 1.67
    CJ. Powell, N.E. Erickson, T.E. Madey: J. Electron Spectrosc. Relat. Phen. 25, 87 (1982)CrossRefGoogle Scholar
  68. 1.68
    V.E. Henrich: Electronic and geometric structure of defects on oxides and their role in chemisorption, In Surface and Near Surface Chemistry of Oxide Materials, ed. by J. Nowotny, L.-C. Dufour ( Elsevier, Amsterdam 1988 ) pp. 23–60Google Scholar
  69. 1.69
    A.B. Kunz: Theoretical study of defects and chemisorption by oxide surfaces, In External and Internal Surfaces in Metal Oxides, ed. by L.-C. Dufour, J. Nowotny, Materials Science Forum ( Trans. Tech. Publications, Claustal-Zellerfeld 1988 ) pp. 1–30Google Scholar
  70. 1.70
    R.L. Segall, R.St.C. Smart, P.S. Turner: Oxide surfaces in solution, In Surface and Near-Surface Chemistry of Oxide Materials, ed. by J. Nowotny, L.-C. Dufour ( Elsevier, Amsterdam 1988 ) pp. 527–576Google Scholar
  71. 1.71
    V.E. Henrich: Ultraviolet photoemission studies of molecular adsorption on oxide surfaces, Prog. Surf. Sci. 9, 143 (1979)CrossRefGoogle Scholar
  72. 1.72
    V.E. Henrich, G. Dresselhaus, Hi. Zeiger: Chemisorbed phases of H2O on TiO2 and SrTiO3, Solid State Commun. 24, 623 (1977)CrossRefGoogle Scholar
  73. 1.73
    M.W. Roberts: Metal oxide overlayers and oxygen-induced chemical reactivity studied by photoelectron spectroscopy, In Surface and Near-Surface Chemistry of Oxide Materials, ed. by J. Nowotny, L.-C. Dufour ( Elsevier, Amsterdam 1988 ) pp. 219–246Google Scholar
  74. 1.74
    G.A. Somorjai: Adv. Catal. 26, 1 (1979)CrossRefGoogle Scholar
  75. 1.75
    G. Heiland, H. Lüth: In The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Vol.3, ed. by D.A. King, D.P. Woodruff ( Elsevier, Amsterdam 1984 ) p. 147Google Scholar
  76. 1.76
    S.C. Chang, P. Mark: Surf. Sci. 45, 721 (1974); ibid. 46, 293 (1974)CrossRefGoogle Scholar
  77. 1.77
    C.C. Schubert, C.L. Page, B. Ralph: Electrochim. Acta 18, 33 (1973)CrossRefGoogle Scholar
  78. 1.78
    J. Marien: Phys. Status Solidi A 38, 339, 513 (1976)CrossRefGoogle Scholar
  79. 1.79
    J. Nowotny, M. Sloma: Work function of oxide ceramic materials, In Surface and Near-Surface Chemistry of Oxide Materials, ed. by J. Nowotny, L.-C. Dufour ( Elsevier, Amsterdam 1988 ) pp. 281–344Google Scholar
  80. 1.80
    S.R. Morrison: The Chemical Physics of Surfaces ( Plenum, New York 1977 )CrossRefGoogle Scholar
  81. 1.81
    H. Wagner: Physical and Chemical Properties of Stepped Surfaces, Springer Tracts Mod. Phys. (Springer, Berlin, Heidelberg 1978 )Google Scholar
  82. 1.82
    H.E. Clark, R.D. Young: Surf. Sci. 12, 385 (1968)CrossRefGoogle Scholar
  83. 1.83
    H.D. Hagman: Science 178, 275 (1972)CrossRefGoogle Scholar
  84. 1.84
    H.D. Hagstrum: Phys. Rev. 150, 495 (1966)CrossRefGoogle Scholar
  85. 1.85
    G. Heiland, H. Luth: Adsorption on oxides, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, ed. by D.A. King, D.P. Woodruff ( Elsevier, Amsterdam 1984 ) p. 156Google Scholar
  86. 1.86
    N.S. Huck, R.St.C. Smart, S.M. Thurgate: Surface photovoltage and XPS studies of electronic structure in defective nickel oxide powders, Surf. Sci. 169, L245 (1986)Google Scholar
  87. 1.87
    E. Garrone, A. Zecchina, F.S. Stone: Philos. Mag. B42, 683 (1980)Google Scholar
  88. 1.88
    W. Göpel: Prog. Surf. Sci. 20, 9 (1985)CrossRefGoogle Scholar
  89. 1.89
    J. Cunningham: Photoeffects on metal oxide powders, in Surface and Near-Surface Chemistry of Oxide materials, ed. by J. Nowotny, L.-C. Dufour ( Elsevier, Amsterdam 1988 ) pp. 345–412Google Scholar
  90. 1.90
    M.W. Roberts, R.St.C. Smart: XPS determination of band bending in defective semiconducting oxide surfaces, Surf. Sci. 151, 1 (1985)Google Scholar
  91. 1.91
    A.W. Adamson: Physical Chemistry of Surfaces ( Wiley, New York 1986 )Google Scholar
  92. 1.92
    Ri. Bohm, W. Höseler: Scanning tunneling microscopy - a review, in Chemistry and Physics of Solid Surfaces VI, ed. by R. Vanselow, R. Howe, Springer Ser. Surf. Sci. Vol. 5 ( Springer, Berlin, Heidelberg 1986 ) pp. 361Google Scholar
  93. 1.93
    W. Hirschwald: In Current Topics in Materials Science, ed. by E. Kaldis, Vol. 7 (1981) p. 143Google Scholar
  94. 1.94
    C.C. Schubert, C.L. Page, B. Ralph: Electrochim. Acta 18, 33 (1973)CrossRefGoogle Scholar
  95. 1.95
    W. Heiland, E. Taglauer: Surf. Sci. 68, 96 (1977)CrossRefGoogle Scholar
  96. 1.96
    A. Benninghoven: Developments in secondary ion mass spectrometry and applications to surface studies, Surf. Sci. 53, 596 (1975)Google Scholar
  97. 1.97
    A. Brown, J.C. Vickerman: Static SIMS for applied surface analysis, Surf. Interface Anal. 6, 1 (1984)CrossRefGoogle Scholar
  98. 1.98
    W. Hirschwald: Selected experimental methods on the characterization of oxide surfaces, In Surface and Near-Surface Chemistry of Oxide Materials ed. by J. Nowotny, L.-C. Dufour (Elsevier, Amsterdam 1988 ) pp. 140–141Google Scholar
  99. 1.99
    M. Grunze, W. Hirschwald, D. Hoffman: J. Cryst. Growth 52, 241 (1981)CrossRefGoogle Scholar
  100. 1.100
    W. Hirschwald, P. Bonasewicz, L. Ernst, M. Grade, D. Hopmann, S. Krebs, R. Littbarski, G. Neumann, M. Grunze, D. Kobb, HJ. Schultz: Zinc oxide, Current Topics Mater. Sci. 7, 143 (1981)Google Scholar
  101. 1.101
    J.A. Cooper, D.R. Cousens, J.A. Hanna, R.A. Lewis, S. Myhre, R.L. Segall, R.St.C. Smart, P.S. Turner, TJ. White: Intergranular films and pore surfaces in Synroc C: structure, composition and dissolution characteristics, J. Amer. Ceram. Soc. 69, 347 (1986)CrossRefGoogle Scholar
  102. 1.102
    D.R. Clarke: Observation of microcracks and thin intergranular films in ceramics by transmission electron microscopy, J. Am. Ceram. Sco. 63, 104 (1980)CrossRefGoogle Scholar
  103. 1.103
    N.H. Turner, B.I. Dunlap, RJ. Colton: Anal. Chem. 56, 373R (1984)CrossRefGoogle Scholar
  104. 1.104
    C.G. Pantano, T.E. Madey: Appl. Surf. Sci. 7, 115 (1981). Note error in Table 1 re. A value of Li2WO4Google Scholar
  105. 1.105
    M.P. Seah: In Surface Analysis of High Temperature Materials: Chemistry and Topography, ed. by G. Kemeny ( Elsevier, London 1984 ) p. 124Google Scholar
  106. 1.106
    C. Klauber: Unpublished dataGoogle Scholar
  107. 1.107
    ASTM Standards on Surface Analysis (1986) ISBN 0–8031–0948–2Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • C. Klauber
  • R. St. C. Smart

There are no affiliations available

Personalised recommendations