Advertisement

Geometry III pp 179-250 | Cite as

Local Theory of Bendings of Surfaces

Chapter
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 48)

Abstract

The origin of the theory of bendings as one of the basic problems of metrical geometry is associated with the names of Euler, Lagrange, Legendre, Cauchy and Gauss. After it was discovered that on surfaces there is an “intrinsic geometry” that does not depend on the external form of the surface, there naturally arose the question of the possibility of deforming the surface, preserving its intrinsic geometry. Consideration of isometric immersions (or, as we say, realizations) of abstractly given Riemannian metrics also leads to the problem of bendings of surfaces as to some problem about the uniqueness or non-uniqueness of an immersion.

Keywords

Configuration Space Local Theory Convex Surface Positive Curvature Isometric Immersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksandrov, A.D. (1937): Infinitesimal bendings of nonregular surfaces. Mat. Sb., Nov. Ser. 1, 307–322 (Russian), Zbl.14,413Google Scholar
  2. Aleksandrov, A.D. (1938): On a class of closed surfaces. Mat. Sb., Nov. Ser. 4, 69–77 (Russian), Zbl.20,261Google Scholar
  3. Aleksandrov, A.D. (1948): The Intrinsic Geometry of Convex Surfaces. Gostekhizdat, Moscow. German transi: Die Innere Geometrie der Konvexen Flächen. Akademie-Verlag, Berlin, 1955, Zbl.38,352Google Scholar
  4. Aleksandrov, A.D. (1950): Convex Polyhedra. Gostekhizdat, Moscow. German transi.: Konvexe Polyeder. Akademie-Verlag, Berlin, 1958, Zbl.41,509zbMATHGoogle Scholar
  5. Aleksandrov, A.D. and Vladimirova, S.M. (1962): Bending of a polyhedron with rigid faces. Vestn. Leningr. Univ. 17, No. 13 (Ser. Mat. Mekh. Astron. No. 3), 138–141 (Russian), Zbl.135,407zbMATHGoogle Scholar
  6. Aleksandrov, V.A. (1989): Remarks on a conjecture of Sabitov on the rigidity of the volume under an infinitesimal bending of a surface. Sib. Mat. Zh. 30, No. 5, 16–24. Engl, transi: Sib. Math. J. 30, No. 5, 678–684 (1989), Zbl.687.53007zbMATHGoogle Scholar
  7. Artin, M. (1968): On the solutions of analytic equations. Invent. Math. 5, 277–291, Zbl.172,53zbMATHMathSciNetGoogle Scholar
  8. Artin, M. (1969): Algebraic approximation of structures over complete local rings. Inst. Hautes Etud. Sci., Publ Math. 36, 23–58, Zbl.181,488zbMATHMathSciNetGoogle Scholar
  9. Belousova, V.P. (1961); Infinitesimal deformations of surfaces. Vestn. Kiev. Univ. Ser. Mat. Mekh., 4, 49–57 (Ukrainian).Google Scholar
  10. Berger, E., Bryant, R., Griffiths, P. (1981): Some isometric embedding and rigidity results for Riemannian manifolds. Proc. Natl. Acad. Sei. USA 78, 4657–4660, Zbl.468.53040zbMATHMathSciNetGoogle Scholar
  11. Berger, M. (1977): Géométrie. Vols. 1–5. Cedic, Paris, Zbl.423.51001Google Scholar
  12. Berri, R.Ya. (1952): An integral invariant of binary forms of the fourth degree. Usp. Mat. Nauk 7, No. 3, 125–130 (Russian), Zbl.49,153zbMATHMathSciNetGoogle Scholar
  13. Bol, G. (1955): Projektive und affinen Eigenschaften des Darbouxschen Flächenkranzes, Abh. Math. Semin. Univ. Hamburg 20, 64–96, Zbl.65,145zbMATHMathSciNetGoogle Scholar
  14. Borisov, Yu.F. (1965): C1, isometric immersions of Riemannian spaces. Dokl Akad. Nauk SSSR 163, 11–13. Engl, transi: Sov. Math. Dokl 6, 869–871 (1965), Zbl.135,403MathSciNetGoogle Scholar
  15. Boudet, R. (1961): Sur quelques propriétés géométriques des transformations infinitésimales des surfaces. Thesis. Fac. Sci. Univ. Aix-Marseille, 78 pp.Google Scholar
  16. Bricard, R. (1897): Mémoire sur la théorie de l’octaèdre articulé. J. Math. Pures Appl. 5, 113–148, Jbuch 28, 624Google Scholar
  17. Burago, Yu.D., Zalgaller, V.A. (1960): Polyhedral embedding of a development Vestn. Leningr. Univ. 15, No. 7, 66–80 (Russian), Zbl.98,354zbMATHMathSciNetGoogle Scholar
  18. Bushmelev A.V., Sabitov, I.Kh. (1990): Configuration spaces of Bricard octahedra. Ukr. Geom. Sb. 33, 36–41 (Russian)zbMATHGoogle Scholar
  19. Calabi, E., Hartman, P. (1970): On the smoothness of isometries. Duke Math. J. 37, 741–751, Zbl.203,543zbMATHMathSciNetGoogle Scholar
  20. Chern, S.S., Osserman, R. (1981): Remarks on the Riemannian metric of a minimal submanifold. Lect. Notes Math. 894, 49–90, Zbl.477.53056MathSciNetGoogle Scholar
  21. Cohn-Vossen, S.E. (1929): Unstarre geschlossene Flächen. Math. Ann. 102, 10–29, Jbuch 55,1016zbMATHMathSciNetGoogle Scholar
  22. Cohn-Vossen, S.E. (1936): Bendability of surfaces in the large. Usp. Mat. Nauk 1, 33–76. Zbl.16,225 (Reprinted in the book: Cohn-Vossen, S.E., Some questions of differential geometry in the large. Fizmatgiz, Moscow, 1954 (Russian))zbMATHGoogle Scholar
  23. Connelly, R. (1974): An attack on rigidity. I, II. Preprint, Cornell Univ., appeared in: Bull. Am. Math. Soc. 81, 566–569 (1975), Zbl.315.50003MathSciNetGoogle Scholar
  24. Connelly, R. (1978): A flexible sphere. Math. Intell. 1, 130–131, Zbl.404.57018 Connelly, R. (1980): The rigidity of certain cabled frameworks and the second order rigidity of arbitrarily triangulated convex surfaces. Adv. Math. 37, 272–299, Zbl.446.51012zbMATHMathSciNetGoogle Scholar
  25. Connelly, R. (1992): Rigidity, in: Handbook of convex geometry (P. Gruber and J. Wills, eds.) (to appear)Google Scholar
  26. Darboux, G. (1896): Léçons sur la théorie générale des surfaces. Part 4, 2nd. ed. Gauthier-Villars, Paris, Jbuch 25,1159zbMATHGoogle Scholar
  27. Dorfman, A.G. (1957): Solution of the equation of bending for some classes of surfaces. Usp. Mat. Nauk 12, No. 2, 147–150 (Russian), Zbl.85,366zbMATHMathSciNetGoogle Scholar
  28. Efimov, N.V. (1948a): Qualitative questions of the theory of deformations of surfaces. Usp. Mat. Nauk 3, No. 2, 47–158. Engl, transi.: Am. Math. Soc. Transi. 6, 274–323, Zbl.30,69zbMATHMathSciNetGoogle Scholar
  29. Efimov, N.V. (1948b): Qualitative questions of the theory of deformations of surfaces “in the small”. Tr. Mat. Inst. Steklova 30, 1–128 (Russian), Zbl.41,488MathSciNetGoogle Scholar
  30. Efimov, N.V. (1948c): On rigidity in the small. Dokl. Akad. Nauk SSSR 60, 761–764 (Russian), Zbl.39,382zbMATHMathSciNetGoogle Scholar
  31. Efimov, N.V. (1952): Some theorems about rigidity and non-bendability. Usp. Mat. Nauk 7, No. 5, 215–224 (Russian), Zbl.47,150zbMATHMathSciNetGoogle Scholar
  32. Efimov, N.V. (1958): A survey of some results on qualitative questions of the theory of surfaces. Proc. 3th All-Union Congr. of Math. 1956, Acad. Sci. Moscow, Vol. 3, 401–407, Zbl.87,361Google Scholar
  33. Efimov, N.V., Usmanov, Z.D. (1973): Infinitesimal bendings of surfaces with a flat point. Dokl. Akad. Nauk SSSR 208, 28–31. Engl, transi.: Sov. Math. Dokl. 14, 22–25 (1973), Zbl.289.53005MathSciNetGoogle Scholar
  34. Fogelsanger, A. (1987): The generic rigidity of minimal cycles. Preprint, Cornell Univ. 60 pp.Google Scholar
  35. Fomenko, V.T. (1962): Investigation of solutions of the basic equations of the theory of surfaces. Dokl. Akad. Nauk SSSR 144, 69–71. Engl, transi.: Sov. Math. Dokl. 3,686–689 (1962), Zbl.l 17,383MathSciNetGoogle Scholar
  36. Fomenko, V.T. (1965): Bending of surfaces with preservation of congruence points, Mat. Sb., Nov. Ser. 66, 127–141 (Russian), Zbl.192,272MathSciNetGoogle Scholar
  37. Gluck, H. (1975): Almost all simple connected closed surfaces are rigid. Lect. Notes Math. 438, 225–239, Zbl.315.50002MathSciNetGoogle Scholar
  38. Gluck, H., Krigelman, K., Singer, D. (1974): The converse to the Gauss-Bonnet theorem in PL. J. Differ. Geom. 9, 601–616, Zbl.294,57014zbMATHMathSciNetGoogle Scholar
  39. Goldstein, R.A., Ryan, P.J. (1975): Infinitesimal rigidity of submanifolds. J. Differ. Geom. 10, 49–60, Zbl.302.53029zbMATHMathSciNetGoogle Scholar
  40. Griffiths, P.A., Jensen, G.R. (1987): Differential systems and isometric embeddings. Ann. of Math. Stud., No. 114, Zbl.637.53001zbMATHGoogle Scholar
  41. Gromov, M.L., Rokhlin, V.A. (1970): Immersions and embeddings of Riemannian manifolds. Usp. Mat. Nauk 25, No. 5, 3–62. Engl, transi.: Russ. Math. Surv. 25, No. 5,1–57 (1970), Zbl.202,210zbMATHGoogle Scholar
  42. Gulliver, R.D., Osserman, R., Royden, H.L. (1973): A theory of branched immersions of surfaces. Am. J. Math. 95, 750–812, Zbl.295.53002zbMATHMathSciNetGoogle Scholar
  43. Hartman, P., Wintner, A. (1951): Gaussian curvature and local embedding. Am. J. Math. 73, 876–884, Zbl.44,184MathSciNetGoogle Scholar
  44. Hartman, P., Wintner, A. (1952): On hyperbolic partial differential equations. Am. J. Math. 74, 834–876, Zbl.48,333zbMATHMathSciNetGoogle Scholar
  45. Hellwig, G. (1955): Über die Verbiegbarkeit von Flächenstucken mit positiver Gausscher Krümmung. Arch. Math. 6, 243–249, Zbl.64,158zbMATHMathSciNetGoogle Scholar
  46. Höesli, R. (1950): Spezielle Flächen mit Flächpunkten und ihre lokale Verbiegbarkeit. Compos. Math. 8, 113–141, Zbl.38,335Google Scholar
  47. Hong, J., Zuily, C. (1987): Existence of C local solutions for the Monge-Ampère equation. Invent. Math. 89, 645–661, Zbl.648.35016zbMATHMathSciNetGoogle Scholar
  48. Hopf, H., Schilt, H. (1938): Über Isometrie und stetige Verbiegung von Flächen. Math. Ann. 116, 58–75, Zbl.19,20MathSciNetGoogle Scholar
  49. Isanov, T.G. (1977): On the extension of infinitesimal bendings. Dokl. Akad. Nauk SSSR 234, 1257–1260. Engl, transi.: Sov. Math. Dokl. 18, 842–846 (1977), Zbl.376.53002MathSciNetGoogle Scholar
  50. Ivanova-Karatopraklieva, I. (1982–1983): Properties of the fundamental field infinitesimal bendings of a surface of revolution. God. Sofij. Univ. Fak. Mat. Mekh. 76, 21–40 (Bulgarian), Zbl.637.53005MathSciNetGoogle Scholar
  51. Ivanova-Karatopraklieva, I. (1987–1988): Infinitesimal third-order bendings of surfaces of revolution with flattening at the pole. Ann. Univ. Sofia Fac. Math. Mec. 81 (to appear), (Russian)Google Scholar
  52. Ivanova-Karatopraklieva, I. (1988): Infinitesimal bendings of surfaces of mixed curvature. Proc. XVII Spring Conf. of the Union of Bulgarian Math. pp. 49–56Google Scholar
  53. Ivanova-Karatopraklieva, I. (1990): Infinitesimal bendings of higher order of rotational surfaces. Compt. Rend, de l’Acad. Bulgare des Sci. 43, No. 12Google Scholar
  54. Ivanova-Karatopraklieva, I., Sabitov, I.Kh. (1989): Infinitesimal second-order bendings of surfaces of revolution with flattening at the pole. Mat. Zametki 45, 28–35. Engl, transi.: Math. Notes 45, No. 112,19–24 (1989), Zbl.662.53003zbMATHMathSciNetGoogle Scholar
  55. Ivanova-Karatopraklieva, I., Sabitov, I.Kh. (1991): Bendings of surfaces. I. Problems of Geometry 23, 131–184 (Russian)zbMATHMathSciNetGoogle Scholar
  56. Ivanova-Karatopraklieva, I., Sabitov, I.Kh. (1992): Bendings of surfaces. II. Problems of Geometry 24 (to appear) (Russian)Google Scholar
  57. Jacobowitz, H. (1972a): Extending isometric embeddings. J. Differ. Geom. 9, 291–307, Zbl.283.53025MathSciNetGoogle Scholar
  58. Jacobowitz, H. (1972b): Implicit function theorems and isometric embeddings. Ann. Math., II. Ser. 95, 191–225, Zbl.214,129zbMATHMathSciNetGoogle Scholar
  59. Jacobowitz, H. (1982a): Local analytic isometric deformations. Indiana Univ. Math. J. 31, No. 1, 47–55, Zbl.502.53004zbMATHMathSciNetGoogle Scholar
  60. Jacobowitz, H. (1982b): Local isometric embeddings. Semin. Differ. Geom., Ann. Math. Stud. 102, 381–393, Zbl.481.53018MathSciNetGoogle Scholar
  61. Kann, E. (1970): A new method for infinitesimal rigidity of surfaces with K ≥ 0. J. Differ. Geom. 4, 5–12, Zbl. 194,525zbMATHMathSciNetGoogle Scholar
  62. Klimentov, S.B. (1982): On the structure of the set of solutions of the basic equations of the theory of surfaces. Ukr. Geom Sb. 25, 69–82 (Russian), Zbl.509.53021zbMATHMathSciNetGoogle Scholar
  63. Klimentov, S.B. (1984): On the extension of higher-order infinitesimal bendings of a simply-connected surface of positive curvature. Mat. Zametki 36, 393–403. Engl, transi.: Math. Notes 36, 695–700 (1984), Zbl.581.53002MathSciNetGoogle Scholar
  64. Kuiper, N. (1955): On C1-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A 58 (Indagationes Math. 17) 545–556; 683–689, Zbl.67,396zbMATHMathSciNetGoogle Scholar
  65. Kuiper, N. (1979): Sphères polyédriques flexibles dans E 3, d’après Robert Connelly. Lect. Notes Math. 710, 147–168, Zbl.435.53043MathSciNetGoogle Scholar
  66. Kuznetsov, V.A. (1987): The structure of a neighbourhood of an isolated zero of the Lipschitz-Killing curvature on an m-dimensional surface in E n . Proc. All-Union Conf. on Geometry “in the large”. Inst. Math. Sib. Division of the USSR Academy of Sciences, Novosibirsk, p. 64Google Scholar
  67. Lashchenko, D.V. (1987): On the rigidity “in the small” of certain classes of hyper surfaces. (Deposited at VINITI, No. 3258, pp. 1–21)Google Scholar
  68. Lashchenko, D.V. (1989): On the rigidity “in the small” of certain classes of surfaces. (Deposited at VINITI, No. 2121, pp. 1–23)Google Scholar
  69. Lebesgue, H. (1902): Intégrale, longueur, aire. Ann. Math. Pura Appl. (3) 7, 231–359, Jbuch 33, 307Google Scholar
  70. Lebesgue, H. (1967): Octaèdres articulés de Bricard. Enseign. Math., IL Ser. 13, 175–185, Zbl.155,493zbMATHMathSciNetGoogle Scholar
  71. Legendre, A. (1806): Eléments de géométrie. 6th ed.,Google Scholar
  72. Paris Lin, CS. (1985): The local isometric embedding in R 3 of two-dimensional Riemannian manifolds with non-negative curvature. J. Differ. Geom. 27, 213–230, Zbl.584.53002Google Scholar
  73. Lin, C.S. (1986): The local isometric embedding in R 3 of two-dimensional Riemannian manifolds with Gaussian curvature changing sign cleanly. Commun. Pure Appl. Math. 39, 867–887, Zbl.612.53013zbMATHGoogle Scholar
  74. Makarova, Z.T. (1953): Investigation of an integral invariant of binary forms of degree n > 4. Mat. Sb., Nov. Ser. 33, 233–240 (Russian), Zbl.52,17MathSciNetGoogle Scholar
  75. Maksimov, I.G. (1987): Investigation of the bendability of polyhedra with few vertices. Proc. All-Union Conf. on Geometry “in the large”. Inst. Math. Siberian Division of the USSR Academy of Sciences, Novosibirsk, p. 75 (Russian)Google Scholar
  76. Markov, P.E. (1980): Infinitesimal bendings of some multidimensional surfaces, Mat. Zametki 27, 469–479. Engl, transi.: Math. Notes 27, 232–237 (1980), Zbl.436.53052zbMATHMathSciNetGoogle Scholar
  77. Markov, P.E. (1987): Infinitesimal higher-order bendings of multidimensional surfaces in spaces of constant curvature, Mat. Sb., Nov. Ser. 133, 64–85. Engl, transi.: Math. USSR, Sb. 61, No. 1,65–85 (1988), Zbl.629.53020Google Scholar
  78. Milka, A.D. (1973): Continuous bendings of convex surfaces, Ukr. Geom. Sb. 13, 129–141 (Russian) Zbl.288.53045zbMATHMathSciNetGoogle Scholar
  79. Milka, A.D. (1986): What is geometry “in the large”?, Nov. Zh. Nauk. Tekhn. Ser. “Mat. Kibernet.” 3, 3–31 (Russian)Google Scholar
  80. Nakamura, G., Maeda, Y. (1985): Local isometric embedding of 2-dimensional Riemannian mani­folds into R 3 with nonpositive Gaussian curvature, Proc. Japan Acad., Ser. A 61, 211–212zbMATHGoogle Scholar
  81. Nash, J. (1954): CMsometric embeddings, Ann. Math., II. Ser. 60, 383–396, Zbl.58,377zbMATHMathSciNetGoogle Scholar
  82. Nirenberg, L. (1963): Rigidity of a class of closed surfaces, in: Nonlinear problems, Proc. Symp. Madison 1962, 177–193, Zbl. 111,344Google Scholar
  83. Pogorelov, A.V. (1967): Geometrical methods in the nonlinear theory of elastic shells, Nauka, Moscow (Russian) Zbl. 168,456Google Scholar
  84. Pogorelov, A.V. (1969): Extrinsic geometry of convex surfaces, Nauka, Moscow. Engl, transi.: Am. Math. Soc, Providence, RI, 1973, Zbl.311.53067Google Scholar
  85. Pogorelov, A.V. (1986): Bendings of Surfaces and Stability of the Shells. Nauka, Moscow: Engl. transi.: Providence, RI (1988), Zbl.616.73051Google Scholar
  86. Poznyak, E.G. (1959): A relation between non-rigidity of the first and second order for surfaces of revolution, Usp. Mat. Nauk 14, No. 6, 179–184 (Russian), Zbl.97,370zbMATHMathSciNetGoogle Scholar
  87. Poznyak, E.G. (1960): Nonrigid closed polyhedra, Vestn. Mosk. Univ. Ser. I. 15, No. 3, 14–19 (Russian), Zbl.98,354zbMATHGoogle Scholar
  88. Poznyak, E.G. (1973): Isometric immersions of two-dimensional Riemannian metrics in Euclidean spaces, Usp. Mat. Nauk 28, No. 4, 47–76. Engl, transi.: Russ. Math. Surv. 28, No. 4, 47–77 (1973), Zbl.283.53001MathSciNetGoogle Scholar
  89. Poznyak, E.G., Sokolov, D.D. (1977): Isometric immersions of Riemannian spaces in Euclidean spaces. Itogi Nauki Tekh., Ser. Algebra, Topologija, Geom. 15,173–211. Engl, transi.: J. Sov. Math. 14, 1407–1428 (1980), Zbl.448.53040Google Scholar
  90. Reshetnyak, Yu.G. (1962): Nonrigid surfaces of revolution. Sib. Mat. Zh. 3, 591–604 (Russian), Zbl. 119,372zbMATHGoogle Scholar
  91. Reshetnyak, Yu.G. (1982): Stability theorems in geometry and analysis. Nauka, Novosibirsk (Russian), Zbl.523.53025zbMATHGoogle Scholar
  92. Sabitov, I.Kh. (1965a): The local structure of Darboux surfaces. Dokl. Akad. Nauk SSSR 162, 1001–1004. Engl, transi.: Sov. Math. Dokl. 6, 804–807 (1965), Zbl.131,193MathSciNetGoogle Scholar
  93. Sabitov, I.Kh. (1965b): Some results on infinitesimal bendings of surfaces “in the small” and “in the large”. Dokl. Akad. Nauk SSSR 162, 1256–1258. Engl, transi.: Sov. Math. Dokl. 6,862–864 (1965), Zbl.131,193MathSciNetGoogle Scholar
  94. Sabitov, I.Kh. (1967): A minimal surface as the rotation graph of a sphere. Mat. Zametki 2, 645–656. Engl, transi.: Math. Notes 2, 881–887 (1968), Zbl.162,247zbMATHMathSciNetGoogle Scholar
  95. Sabitov, I.Kh. (1973): Rigidity of “corrugated” surfaces of revolution. Mat. Zametki 14, 517–522. Engl, transi.: Math. Notes 14, 854–857 (1973), Zbl.283.53004zbMATHMathSciNetGoogle Scholar
  96. Sabitov, LKh. (1979a): Infinitesimal bendings of surfaces of revolution with exponential flattening at the pole. Proc. 7th All-Union Conf. on modern problems of geometry. Beloruss. State Univ., Minsk, p. 240Google Scholar
  97. Sabitov, I.Kh. (1979b): Trough, Mat. Entsiklopediya. Vol. 2, p. 409. Engl, transi, in: Encycl. Math., Reidel, Dordrecht, 1988Google Scholar
  98. Sabitov, I.Kh. (1983): Description of bendings of degenerate suspensions. Mat. Zametki 33, 901–914. Engl, transi.: Math. Notes 33,462–468 (1983), Zbl.528.51012MathSciNetGoogle Scholar
  99. Sabitov, I.Kh. (1986): Investigation of the rigidity and non-bendability of analytic surfaces of revolution with flattening at the pole. Vestn. Mosk. Univ., Ser. 11986, No. 5, 29–36. Engl, transi.: Mose. Univ. Math. Bull. 41, No. 5, 33–41 (1986), Zbl.633.53006MathSciNetGoogle Scholar
  100. Sabitov, I.Kh. (1987): Some results and problems of the local theory of bendings. Proc. All-Union Conf. on geometry in the large, Inst. Math. Siberian Division of the USSR Academy of Sciences, Novosibirsk, p. 108 (Russian)Google Scholar
  101. Sabitov, I.Kh. (1988): Isometric immersions and embeddings of locally Euclidean metrics in R 2 . Tr. Semin. Vektorn. Tenzorn. Anal. 23, 147–156 (Russian)zbMATHMathSciNetGoogle Scholar
  102. Sabitov, I.Kh. (1989): New classes of unbendable polyhedra. Proc. All-Union Conf. on geometry and analysis, Inst. Math. Siberian Division of the USSR Academy of Sciences, Novosibirsk, p. 72 (Russian)Google Scholar
  103. Sauer, R. (1935): Infinitesimale Verbiegungen zueinander projektiver Flächen. Math. Ann. 111, 71–82, Zbl.10,374MathSciNetGoogle Scholar
  104. Sauer, R. (1948): Projektive Transformationen des Darboux’schen Flächenkranzes. Arch. Math. 1, 89–93, Zbl.31,269zbMATHMathSciNetGoogle Scholar
  105. Schilt, H. (1937): Über die isolierten Nullstellen der Flächenkrümmung und einige Verbiegkeitssätze. Compos. Math. 5, 239–283, Zbl.18,169zbMATHMathSciNetGoogle Scholar
  106. Sen’kin, E.P. (1978): Bending of convex surfaces. Itogi Nauki Tekh., Ser. Probl. Geom. 10, 193–222 (Russian). Engl, transi.: J. Sov. Math. 14,1287–1305 (1980), Zbl.423.53047MathSciNetGoogle Scholar
  107. Shor, L.A. (1962): An example of a discontinuum of nontrivially isometric convex surfaces. Usp. Mat. Nauk 17, No. 5, 157–160 (Russian), Zbl.168,424zbMATHGoogle Scholar
  108. Sinyukov, N.S. (1986): On the development of modern differential geometry in Odessa State University in recent years. Izv. Vyssh. Uchebn. Zaved., Mat., No. 1, 69–74. Engl, transi.: Soviet Math. 30, No. 1, 92–99 (1986), Zbl.602.01031MathSciNetGoogle Scholar
  109. Spivak, M. (1979): A comprehensive introduction to differential geometry. Vol. 5, 2nd. ed., Publish or Perish, Berkeley, CA, Zbl.306.53003Google Scholar
  110. Tartakovskij, V.A. (1953): The JV-invariant of N.V. Efimov in the theory of bending of surfaces. Mat. Sb., Nov. Ser. 32, 225–248 (Russian), Zbl.50,160Google Scholar
  111. Trotsenko, D.A. (1980): Non-rigid analytic surfaces of revolution. Sib. Mat. Zh. 21, No. 5, 100–108. Engl, transi.: Sib. Math. J. 21, 718–724 (1980), Zbl.467.53001zbMATHMathSciNetGoogle Scholar
  112. Usmanov, Z.D. (1984): Infinitesimal bendings of surfaces of positive curvature with a flat point, in: Differential Geometry, Warsaw 1979, Banach Cent. Publ. 12, 241–272 (Russian), Zbl.559.53002Google Scholar
  113. Vasifeva, A.B., Butuzov, V.F. (1978): Singularly perturbed equations in critical cases. Moscow Univ. Press. Moscow (Russian)Google Scholar
  114. Vekua, I.N. (1959): Generalized analytic functions. Fizmatgiz, Moscow. Engl, transi.: Pergamon Press, London-Paris-Frankfurt; Addison-Wesley, Reading, MA, 1962, Zbl.92,297zbMATHGoogle Scholar
  115. Vekua, I.N. (1982): Some general methods of constructing different versions of the theory of shells. Nauka, Moscow, Zbl.598.73100. Engl, transi.: Pitman, Boston etc., 1985Google Scholar
  116. Vincensini, P. (1962): Sur les propriétés géométriques des transformations infinitésimales des surfaces et ses relations avec la théorie de congruences des sphères. Ann. Sci. Éc. Norm. Super., HI. Ser. 79, 299–319, Zbl.108,345zbMATHMathSciNetGoogle Scholar
  117. Vojtsekhovskij, M.I. (1977): Infinitesimal bending. Mat. Entsiklopediya, Vol. 1, p. 435. Engl, transi. in: Encycl. Math., Reidel, Dordrecht, 1988Google Scholar
  118. Vojtsekhovskij, M.I. (1979): Darboux surfaces. Mat. Entsiklopediya Vol. 2, p. 16. Engl, transi, in: Encycl. Math., Reidel, Dordrecht, 1988Google Scholar
  119. Whiteley, W. (1984): Infinitesimally rigid polyhedra. I. Statics of frameworks. Trans. Am. Math. Soc. 285, 431–465, Zbl.518.52010zbMATHMathSciNetGoogle Scholar
  120. Whiteley, W. (1987a): Applications of the geometry of rigid structures. Proc. Conf. on computer-aided geometric reasoning (Sophia-Antipolis, 1987), Vol. II,.INRIA, Rocquencourt, pp. 217–251Google Scholar
  121. Whiteley, W. (1987b): Rigidity and polarity. I. Statics of sheet structures. Geom. Dedicata 22, 329–362, Zbl.618.51006zbMATHMathSciNetGoogle Scholar
  122. Yanenko, N.N. (1952): Some necessary conditions for bendable surfaces V m in (m + q)-dimensional Eudlidean space. Tr. Semin. Vektorn. Tenzorn. Anal. 9, 236–287 (Russian), Zbl.48,389MathSciNetGoogle Scholar
  123. Yanenko, N.N. (1954): On the theory of embedding of surfaces into multidimensional Eudlidean space. Trudy Mosk. Mat. O.-va 3, 89–180 (Russian), Zbl.58,156MathSciNetGoogle Scholar
  124. Zalgaller, V.A. (1962): Possible singularities of smooth surfaces. Vestn. Leningr. Univ. 17, No. 7 (Ser. Mat. Mekh. Astron. No. 2), 71–77 (Russian), Zbl.122,170Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

There are no affiliations available

Personalised recommendations