Skip to main content

Spectral Analysis of Heart Rate During Different States of Activity

  • Conference paper
  • 83 Accesses

Abstract

The momentary mean heart rate results from an interaction of several different mechanisms. The reticular activating system which generates the basic drive for somatomotor, respiratory, and cardiovascular control systems (Magoun 1950; Moruzzi 1972) exerts excitatory influences on cardiomotor neurons and, therefore, “unspecifically” drives the chronotropic cardiac innervation. Conversely, limbic structures specifically control heart rate when organizing the autonomic components of ongoing behavior (Hess 1949). With increasing activity, afferent information processing from various receptor sites contribute to the adequate adjustment of the heart rate to changing metabolic demands. Especially during low physical activation, heart rate, as an effector of the blood pressure control system, is affected by baroreceptor activity via a negative feedback loop (Bristow et al. 1971).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Satter N, Young S (1983) Effects of posture on the heart rate pattern in man. J Physiol 343: 54P - 55P

    Google Scholar 

  • Abel H-H, Krause R, K1üBendorf D, Miltenberger M, Koepchen HP (1988) Differentiation of heart rate parameters during recovery from maximum physical work. Pflügers Arch 411:R 18

    Google Scholar 

  • Abel H-H, K1üBendorf D, Koepchen HP ( 1989 a) New approach of analysing the neurovegetative state in man. In: Droh R, Spintge R (eds) Innovations in physiological anaesthesia and monitoring. Springer, Berlin Heidelberg New York, pp 21–34

    Chapter  Google Scholar 

  • Abel H-H, K1üBendorf D, Koepchen HP (1989b) Relation between tone and rhythmicity of cardiac chronotropic innervation. Pflügers Arch 413: R11

    Google Scholar 

  • Abel H-H, KlüBendorf D, Droh R, Koepchen HP ( 1991 a) Cardiorespiratory relations in human heart rate pattern. In: Koepchen HP, Huopaniemi T (eds) Cardiorespiratory and motor coordination. Springer, Berlin Heidelberg New York, pp 307–318

    Chapter  Google Scholar 

  • Abel H-H, Krause R, KlüBendorf D, Berger R, Droh R, Koepchen HP ( 1991 b) Inference about cardiac chronotropic innervation during varying levels of physical activity by power spectral analysis of heart rate. In: Bachl N, Graham TE, Löllgen H (eds) Advances in ergometry. Springer, Berlin Heidelberg New York, pp 325–331

    Google Scholar 

  • Ahmed AK, Harness JB, Mearns AJ (1982) Respiratory control of heart rate. Eur J Appl Physiol 50: 95–104

    Article  Google Scholar 

  • Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ (1981) Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science 213: 220–222

    Article  PubMed  CAS  Google Scholar 

  • Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ (1985) Hemodynamic regulation: investigation by spectral analysis. Am J Physiol 249: H 867—H 875

    Google Scholar 

  • Angelone A, Coulter NA (1964) Respiratory sinus arrhythmia: a frequency dependent phenomenon. J Appl Physiol 19: 479–482

    PubMed  CAS  Google Scholar 

  • Anrep GV, Pascual W, Rössler R (1936) Respiratory variations of the heart rate. I — The reflex mechanism of the respiratory arrhythmia. Proc R Soc Lond (B) 119: 191–217

    Google Scholar 

  • Arai Y, Saul JP, Albrecht P, Hartley LH, Lilly LS, Cohen RJ, Colucci WS (1989) Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol 256: H 132-H 141

    Google Scholar 

  • Bristow JD, Brown EB Jr, Cunningham DJC, Howson MG, Peterson ES, Pickering TG, Sleight P(1971) Effect of bicycling on the baroreflex regulation of pulse interval. Circ. Res 28: 582–592

    Google Scholar 

  • Burgess ED (1982) Cardiac vagal denervation in hemodialysis patients. Nephron 30: 228–230

    Article  PubMed  CAS  Google Scholar 

  • Eckberg DL, Orshan CR (1977) Respiratory and baroreceptor reflex interactions in man. J Clin Invest 59: 780–785

    Article  PubMed  CAS  Google Scholar 

  • Eckholdt K (1984) Verfahren und Ergebnisse der quantitativen automatischen Analyse der Herzfrequenz und deren Spontanvariabilität. Dtsch Gesundh Wesen 39: 856–863

    Google Scholar 

  • Eckholdt K (1985) Herzfrequenzvariabilität and deren spektrale Komponenten bei unterschiedlichen autonomen Funktionszuständen. Ergebn exp Med 46: 106–116

    Google Scholar 

  • Fouad FM, Tarazi RC, Ferrario CM, Fighaly S, Alicandri C (1984) Assessment of parasym- pathetic control of heart rate by a noninvasive method. Am J Physiol 246: H838 — H842

    PubMed  CAS  Google Scholar 

  • Gilbey MP, Jordan D, Richter DW, Spyer KM (1984) Synaptic mechanisms involved in the inspiratory modulation of vagal cardio-inhibitory neurones in the cat. J Physiol 356: 65–78

    PubMed  CAS  Google Scholar 

  • Gunderson HJG, Neubauer B (1977) A long-term diabetic autonomic nervous abnormality. Reduced variations in resting heart rate measured by a simple and sensitive method. Diabetologia 13: 137–140

    Google Scholar 

  • Guyton AC, Harris JW (1951) Pressoreceptor-autonomic oscillation: a probable cause of vasomotor waves. Am J Physiol 165: 158–166

    PubMed  CAS  Google Scholar 

  • Hess WR (1949) Das Zwischenhirn. Syndrome, Lokalisationen, Funktionen. Schwabe, Basel Hirsch JA, Bishop B (1981) Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol 241: H620 — H629

    Google Scholar 

  • Hyndman BW, Kitney RI, Sayers B McA (1971) Spontaneous rhythms in physiological control systems. Nature 233: 339–341

    CAS  Google Scholar 

  • Iriuchijima J, Kumada M (1964) Activity of single vagal fibers efferent to the heart. Jpn J Physiol 14: 479–487

    Article  PubMed  CAS  Google Scholar 

  • Jewett DL (1964) Activitiy of single efferent fibers in the cervical vagus nerve of the dog with special reference to possible cardio-inhibitory fibers. J Physiol 175: 321–357

    PubMed  CAS  Google Scholar 

  • Katona G, Poitras J, Barnett O, Terry B (1970) Cardiac vagal efferent activity and heart period in the carotid sinus reflex. Am J Physiol 218: 1030–1037

    PubMed  CAS  Google Scholar 

  • Katona PG, Jih F (1975) Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol 39: 801–805

    PubMed  CAS  Google Scholar 

  • Koepchen HP (1984) History of studies and concepts of blood pressure waves. In: Miyakawa K, Koepchen HP, Polosa C (eds) Mechanisms of blood pressure waves. Japan Scientific Society and Springer, Berlin Heidelberg New York, pp 3–23

    Google Scholar 

  • Koepchen HP, Thurau K (1959) Über die Entstehungsbedingungen der atemsynchronen Schwankungen des Vagustonus ( Respiratorische Arrhythmie ). Pflügers Arch 269: 10–30

    Google Scholar 

  • Koepchen HP, Wagner P-H, Lux HD (1961) fiber die Zusammenhänge zwischen zentraler Erregbarkeit, reflektorischem Tonus and Atemrhythmus bei der nervösen Steuerung der Herzfrequenz. Pflügers Arch 273: 443–465

    Google Scholar 

  • Koepchen HP, Abel H-H, KlüBendorf D (1985) Heart-rate dynamics in healthy humans before, during and after a mental test. Pflügers Arch 405: R50

    Article  Google Scholar 

  • Langhorst P, Schulz G, Lambertz M (1984) Oscillating neuronal network of the “common brainstem system”. In: Miyakawa K, Koepchen HP, Polosa C (eds) Mechanisms of blood pressure waves. Japan Scientific Society and Springer, Berlin Heidelberg New York, pp 257–275

    Google Scholar 

  • Levy MN, Zieske H (1969) Autonomic control of cardiac pacemaker activity and atrioventricular transmission. J Appl Physiol 27: 465–470

    PubMed  CAS  Google Scholar 

  • Magoun HW (1950) Caudal and cephalic influences of the brain stem reticular formation. Physiol Rev 30: 459–474

    PubMed  CAS  Google Scholar 

  • Malliani A, Lombardi F, Pagani M, Cerutti S (1986) The problem of approaching the sympathetic and vagal “tone”. J Autonom Nery Syst [Suppl] 191–196

    Google Scholar 

  • Melcher A (1976) Respiratory sinus arrhythmia in man. A study in heart rate regulating mechanisms. Acta Physiol Scand [Suppl] 435: 1–31

    CAS  Google Scholar 

  • Mitchell JH, Schmidt RF (1983) Cardiovascular reflex control by afferent fibers from skeletal muscle receptors. In: Shepherd JT, Abboud FM, Geiger SR (eds) Handbook of physiology, Sect. 2: The Cardiovascular System, vol III, part 2. American Physiological Society, Bethesda, Maryland, pp 623–658

    Google Scholar 

  • Moruzzi G (1972) The sleep-waking cycle. Ergebn Physiol 64: 1–165

    PubMed  CAS  Google Scholar 

  • Mulder G, Mulder LJM (1981) Information processing and cardiovascular control. Psychophysiology 18: 392–402

    Article  PubMed  CAS  Google Scholar 

  • Pagani M, Lombardi F, Guzzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Malliani A (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympathovagal interaction in man and conscious dog. Circ Res 59: 178–193

    Article  PubMed  CAS  Google Scholar 

  • Pagani M, Furlan R, Pizzinelli P, Crivellaro W, Cerutti S, Malliani A (1989) Spectral analysis of R-R and arterial pressure variabilities to assess sympatho-vagal interaction during mental stress in humans. J Hypert 7 [Suppl] 6: S14 — S 15

    Google Scholar 

  • Penâz J (1978) Mayer waves: history and methodology. Automedica 2: 135–141

    Google Scholar 

  • Penâz J, Roukens J, Waal Hi van der (1968) Spectral analysis of some spontaneous rhythms in the circulation. Biokybernetic I: 233 —236

    Google Scholar 

  • Pfeifer B, Cammann H, Dinter W, Eckoldt K, Schädlich M, Schubert E (1977) Herzrhythmik und metabolische Größen bei und nach Ergometerbelastung. Med Sport 17: 143–145

    Google Scholar 

  • Pickering TG, Gribbin B, Petersen ES, Cunningham DJC, Sleight P (1972) Effects of autonomic blockade on the baroreflex in man at rest and during exercise. Circ Res 30: 177–185

    Article  PubMed  CAS  Google Scholar 

  • Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, Benson H (1985) Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol 17:H151 — H153

    Google Scholar 

  • Ranson SW, Magoun HW (1939) The hypothalamus. Ergebn Physiol 41: 56–163

    Article  Google Scholar 

  • Sayers BMcA (1973) Analysis of heart rate variability. Ergonomics 16: 17–32

    Article  PubMed  CAS  Google Scholar 

  • Schlomka G (1937) Untersuchungen über die physiologische Unregelmäßigkeit des Herzschlages. III. Mitteilung. Über die Abhängigkeit der respiratorischen (Ruhe-)Arrhythmie von der Schlagfrequenz und vom Lebensalter. Z Kreislaufforsch 29: 510–524

    Google Scholar 

  • Schlomka G, Reindell H (1936) Untersuchungen über die physiologische Unregelmäßigkeit des Herzschlages. Z Kreislaufforsch 28: 473–492

    Google Scholar 

  • Seller H, Langhorst P, Polster J, Koepchen HP (1967) Zeitliche Eigenschaften der Vasomotorik. II. Erscheinungsformen und Entstehung spontaner und nervös induzierter Gefäßrhythmen. Pflügers Arch 296: 110–132

    Google Scholar 

  • Weise F, Heydenreich F, Runge U (1987) Contributions of sympathetic and vagal mechanisms to the genesis of heart rate fluctuations during orthostatic load: a spectral analysis. J Autonom Nerv Syst 21: 127–134

    Article  CAS  Google Scholar 

  • Zwiener U (1979) The influence of orthostatic load upon coherence and phase spectra of autonomic rhythms in healthy volunteers and patients suffering from neurocirculatory asthenia. Automedica 3: 57–61

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abel, HH., Klüßendorf, D., Koralewski, E., Krause, R., Droh, R. (1992). Spectral Analysis of Heart Rate During Different States of Activity. In: Schmidt, T.F.H., Engel, B.T., Blümchen, G. (eds) Temporal Variations of the Cardiovascular System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02748-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02748-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02750-9

  • Online ISBN: 978-3-662-02748-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics