Skip to main content

Exploitation of Peptide Transport Systems in the Design of Antimicrobial Agents

  • Conference paper

Abstract

The occurrence of transport systems for the uptake of peptide nutrients is widespread amongst bacteria and fungi. In general, two or three such systems occur, the overlapping and complementary specificities of which ensure the efficient uptake of all peptides comprising 2–5 residues. The broad structural specificities of these systems also permit uptake of modified natural peptides and varied peptide analogues. This situation is being exploited in the synthesis of peptide smugglins, i.e. compounds in which a normally impermeant moiety is incorporated into a peptide so that it can be actively accumulated; once inside the organism, the impermeant moiety can be released enzymically but will be unable to efflux. In this way, potentially toxic compounds can be directed against normally inaccessible, intracellular targets. Various natural, antibacterial peptide smugglins are known to exist.

Here we describe novel assays, using purified peptide binding proteins, to characterise substrate binding, the results of which can be used in the design of optimal peptide carriers for uptake of smugglins. In addition, we report on the use in vitro of antibacterial smugglins together with different antimicrobial agents that offer interesting prospects for combinative drug therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Payne JW and Gilvarg C, Peptide transport. Adv. Enzymol. Relat. Areas Molec. Biol. 35: 187–244, 1971

    CAS  Google Scholar 

  2. Payne JW, Mechanisms of bacterial peptide transport. CIBA Found. Symp. 4: 17–32, 1972.

    Google Scholar 

  3. Payne JW, Peptides and microorganisms. Adv. Microbiol. Physiol. 13: 55–113, 1976.

    Article  CAS  Google Scholar 

  4. Becker JM and Naider F, Transport and utilization of peptides by yeast. In: Microorganisms and Nitrogen Sources (ed Payne JW ), pp. 257–279. John Wiley and Sons, Chichester, London, 1980.

    Google Scholar 

  5. Payne JW, Transport and utilization of peptides by bacteria. In: Microorganisms and Nitrogen Sources (ed Payne JW ), pp. 211–256. John Wiley and Sons, Chichester, London, 1980.

    Google Scholar 

  6. Payne JW, Drug delivery systems: optimising the structure of peptide carriers for synthetic antimicrobial drugs. Drugs Exptl. Clin. Res. 12: 585–594, 1986.

    CAS  Google Scholar 

  7. Matthews DM and Payne JW, Transmembrane transport of small peptides. Curr. Topics Membr. Transp. 14, 331–425, 1980.

    Article  CAS  Google Scholar 

  8. Higgins CF and Gibson MM, Peptide transport in bacteria. Meth. Enzymol. 125: 365–377, 1986.

    Article  PubMed  CAS  Google Scholar 

  9. Payne JW, Peptide transport in bacteria: methods, mutants and energy coupling. Biochem. Soc. Trans. 11: 794–798, 1983.

    PubMed  CAS  Google Scholar 

  10. Payne JW, Oligopeptide transport in Escherichia coli. J. Biol. Chem. 243: 3395–3403, 1968.

    CAS  Google Scholar 

  11. Alves RA and Payne JW, The number and nature of the peptide-transport systems of Escherichia coli: characterization of specific transport mutants. Biochem. Soc. Trans. 8: 704–705, 1980.

    PubMed  CAS  Google Scholar 

  12. Payne JW, Morley JS, Armitage P and Payne GM, Transport and hydrolysis of antibacterial peptide analogues in Escherichia coli: backbone-modified aminoxy peptides. J. Gen. Microbiol. 130: 2253–2265, 1984.

    PubMed  CAS  Google Scholar 

  13. Barak Z and Gilvarg C, Triornithine-resistant strains of E. coli: isolation, definition and genetic studies. J. Biol. Chem. 249: 143–148, 1974.

    PubMed  CAS  Google Scholar 

  14. Gibson MM, Price M and Higgins CF, Genetic characterization and molecular cloning of the tripeptide permease (tpp) genes of Salmonella typhimurium. J. Bacteriol. 160: 122–130, 1984.

    CAS  Google Scholar 

  15. Payne JW and Shallow DA, Studies on drug targetting in the pathogenic fungus Candida albicans: peptide transport mutants resistant to polyoxins, nikkomycins and bacilysin. FEMS Microbiol. Lett. 28: 55–60, 1985.

    Article  CAS  Google Scholar 

  16. Ames BN, Ames GF-L, Young JD, Isuchiya D and Lecocq J, Illicit transport: the oligopeptide permease. Proc. Nail. Acad. Sci. USA 70: 456 158, 1973.

    Google Scholar 

  17. Fickel TE and Glivarg C, Transport of impermeant substances in E. coli by way of oligopeptide permease. Nature New Biol. 241, 161–163, 1973.

    PubMed  CAS  Google Scholar 

  18. Gilvarg C, Portage transport. In: The Future of Antibiotherapy and Antibiotic Research (eds Ninok L et al.), pp. 352–362. Academic Press, London, 1981.

    Google Scholar 

  19. Ringrose PS, Peptides as antimicrobial agents. In: Microorganisms and Nitrogen Sources (ed Payne JW ), pp. 641–692. John Wiley and Sons, Chichester, London, 1980.

    Google Scholar 

  20. Matthews DM and Payne JW, Peptides in the nutrition of microorganisms and peptides in relation to animal nutrition. In: Peptide Transport in Protein Nutrition (eds Matthews DM and Payne JW ), pp. 1–60. North Holland and American Elsevier, Amsterdam, 1975.

    Google Scholar 

  21. Kenig M and Abraham EP, Antimicrobial activities and antagonists of bacilysin and anticapsin. J. Gen. Microbiol. 94: 37–45, 1976.

    Article  PubMed  CAS  Google Scholar 

  22. Molloy BB, Lively DH, Gale RM, Gorman M, Boeck LD, Higgens CE, Kastner RE, Huckstep LL and Neuss N, New dipeptide antibiotic from Streptomyces collinus, lindenbein. J. Antibiot. 25: 137–140, 1972.

    Article  PubMed  CAS  Google Scholar 

  23. Diddens H, Dorgerloh M and Zahner H, Metabolic products of microorganisms 176. On the transport of small peptide antibiotics in bacteria. J. Antibiot. 32: 87–90, 1979.

    Article  PubMed  CAS  Google Scholar 

  24. Murakami T, Anzai H, Imai S, Safoh A, Nagaoka K and Thompson CJ, The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol. Gen Genet. 205: 42–50, 1986.

    Article  CAS  Google Scholar 

  25. Staskawicz BJ and Panopoulos NJ, Phaseolotoxin transport in Escherichia coli and Salmonella typhimurium via the oligopeptide permease. J. Bacteriol. 142: 474–479, 1980.

    PubMed  CAS  Google Scholar 

  26. Muller H, Furter R, Zahner H and Rast DM, Metabolic products of microorganisms 203: Inhibition of chitosomal chitin synthetase and growth of Mucor rouxii by nikkomycin Z, nikkomycin X and polyoxin A. A comparison. Arch. Microbiol. 130: 195–197, 1981.

    Article  Google Scholar 

  27. Scannell JP and Pruess DL, Naturally occurring amino acid and oligopeptide antimetabolites. In: Chemistry and Biochemistry of Amino Acids, Peptides and Proteins (ed Weinstein B ), pp. 189–243. Marcel Dekker, New York, 1974.

    Google Scholar 

  28. Ringrose PS, Warhead delivery and suicide substrates as concepts in antimicrobial drug design. In: Scientific Basis of Antimicrobial Chemotherapy (eds Greenwood D and O’Grady F ), pp. 219–266. Cambridge Univ. Press, 1985.

    Google Scholar 

  29. Atherton FR, Hall MJ, Hassall CH, Lambert RW and Ringrose PS, Phosphonopeptides as antibacterial agents: rationale, chemistry and structure-activity relationships. Antimicrob. Agents Chemother. 15: 677–683, 1979.

    Article  PubMed  CAS  Google Scholar 

  30. Atherton FR, Hall MJ, Hassall CH, Lambert RW, Lloyd WJ, Lord AV, Ringrose PS, and Westmacott D, Phosphonopeptides as substrates for peptide transport systems and peptidases of Escherichia coli. Antimicrob. Agents Chemother. 24: 522–528, 1983.

    Article  CAS  Google Scholar 

  31. Kingsbury WD, Boehm JC, Mehta RJ and Grappel SF, Transport of antimicrobial agents using peptide carrier systems: anticandidal activity of m-fluorophenylalanine-peptide conjugates. J. Med. Chem. 26: 1725–1729, 1983.

    Article  PubMed  CAS  Google Scholar 

  32. Steinfeld AS, Naider F and Becker JM, Anticandidal activity of 5-fluorocytosine-peptide conjugates. J. Med. Chem. 22: 1104–1109, 1979.

    Article  PubMed  CAS  Google Scholar 

  33. Andruskiewicz R. Chmara H, Milewski S and Borowski E, Synthesis and biological properties of N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid dipeptides, a novel group of antimicrobial agents. J. Med. Chem. 30: 1715–1719, 1987.

    Article  PubMed  Google Scholar 

  34. Hammond SM, Claesson A, Jansson AM, Larsson L-G, Pring BG, Town CM and Ekström B, A new class of synthetic antibacterials acting on lipopolysaccharide biosynthesis. Nature 327: 730–732, 1987.

    Article  PubMed  CAS  Google Scholar 

  35. Kingsbury WD, Boehm JC, Perry D and Gilvarg C, Portage of various compounds into bacteria by attachment to glycine residues in peptides. Proc. Natl. Acad. Sci. USA 81: 4573–4576, 1984.

    Article  PubMed  CAS  Google Scholar 

  36. Boehm JC, Kingsbury WD, Perry D and Gilvarg C, The use of cysteinyl peptides to effect portage transport of sulfhydryl-containing compounds in Escherichia coli. J. Biol. Chem. 258: 1485014855, 1983.

    Google Scholar 

  37. Morley JS, Payne JW and Hennessey TD, Antibacterial activity and uptake into Escherichia coli of backbone-modified analogues of small peptides. J. Gen. Microbiol. 129: 3701–3708, 1983.

    PubMed  CAS  Google Scholar 

  38. Olson ER, Dunyak DS, Jurss LM and Poorman RA, Identification and characterization of dppA, an Escherichia coli gene encoding a periplasmic dipeptide transport protein. J. Bacteriol. 173: 234–244, 1991.

    PubMed  CAS  Google Scholar 

  39. Jamieson DJ and Higgins CF, Anaerobic and leucine-dependent expression of a peptide transport gene in Salmonella typhimurium. J. Bacteriol. 160: 131–136, 1984.

    CAS  Google Scholar 

  40. Payne JW, Barrett-Bee KJ and Shallow DA, Peptide substrates rapidly modulate expression of dipeptide and oligopeptide permeases in Candida albicans. FEMS Microbiol. Lett. 79, 15–20, 1991.

    Article  CAS  Google Scholar 

  41. Milewski S, Andruskiewicz R and Borowski E, Substrate specificity of peptide permeases in Candida albicans. FEMS Microbiol. Lett. 50: 73–78, 1988.

    Article  CAS  Google Scholar 

  42. Payne JW and Bell G, The transport and utilization of peptides by Escherichia coli: interrelations between peptide uptake and amino acid exodus and biosynthesis. FEMS Microbiol. Lett. 2: 259–262, 1977.

    Article  CAS  Google Scholar 

  43. Payne JW and Bell G, Direct determination of the properties of peptide transport systems in Escherichia coli, using a fluorescent-labelling procedure. J. Bacteriol. 137: 447–455, 1979.

    PubMed  CAS  Google Scholar 

  44. Payne JW and Nisbet TM, Limitations to the use of radioactively labelled substrates for studying peptide transport in microorganisms. FEBS Letts. 119: 73–76, 1980.

    Article  CAS  Google Scholar 

  45. Payne JW and Nisbet TM, Continuous monitoring of substrate uptake by microorganisms using fluorescamine: application to peptide transport by Saccharomyces cerevisiae and Streptococcus faecalis. J. Appl. Biochem. 3: 447–458, 1981.

    CAS  Google Scholar 

  46. Goodell EW and Higgins CF, Uptake of cell wall peptides by Salmonella typhimurium and Escherichia coli. J. Bacteriol. 169: 3861–3865, 1987.

    CAS  Google Scholar 

  47. Higgins CF, Hyde SC, Mimmack MM, Gileadi U, Gill DR and Gallagher MP, Binding protein-dependent transport systems. J. Bioenerg. Biomembr. 22: 571–592, 1990.

    Article  PubMed  CAS  Google Scholar 

  48. Ames GFL, Bacterial periplasmic transport systems: structure, mechanism and evolution. Annu. Rev. Biochem. 55: 397–425, 1986.

    Article  PubMed  CAS  Google Scholar 

  49. Alves RA, Gleaves JT and Payne JW, The role of outer membrane proteins in peptide uptake by Escherichia coli. FEMS Microbiol. Lett. 27: 333–338, 1985.

    Article  CAS  Google Scholar 

  50. Richarme G and Kepes A, Study of binding protein ligand interactions by ammonium sulphate assisted adsorption on cellulose ester filters. Biochem. Biophys. Acta 742: 16–22, 1983.

    Article  PubMed  CAS  Google Scholar 

  51. Tyreman DR, Peptide transport systems and antibiotic design. Ph.D. Thesis, University of Wales, Bangor, 1990.

    Google Scholar 

  52. Freidinger RM, Non-peptide ligands for peptide receptors. Trends Pharmacol. Sci. 10: 270–274, 1989.

    Article  PubMed  CAS  Google Scholar 

  53. Smith MW and Payne JW, Simultaneous exploitation of different peptide permeases by combinations of synthetic peptide smugglins can lead to enhanced antibacterial activity. FEMS Microbiol. Lett. 70: 311–316, 1990.

    CAS  Google Scholar 

  54. Ames GFL, Mimura CS and Shyamala V, Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to human: Traffic ATPases. FEMS Microbiol. Rev. 75: 429–446, 1990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tyreman, D.R., Smith, M.W., Payne, G.M., Payne, J.W. (1992). Exploitation of Peptide Transport Systems in the Design of Antimicrobial Agents. In: Shugar, D., Rode, W., Borowski, E. (eds) Molecular Aspects of Chemotherapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02740-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02740-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02742-4

  • Online ISBN: 978-3-662-02740-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics